scholarly journals The Role of M3 Muscarinic Receptor Ligand-Induced Kinase Signaling in Colon Cancer Progression

Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 308 ◽  
Author(s):  
Mazen Tolaymat ◽  
Shannon Larabee ◽  
Shien Hu ◽  
Guofeng Xie ◽  
Jean-Pierre Raufman

Despite a reduction in incidence over the past decade, colon cancer remains the second most common cause of cancer death in the United States; recent demographics suggest this disease is now afflicting younger persons. M3 muscarinic receptor (M3R) mRNA and protein are over-expressed in colon cancer, and M3R can be activated by both traditional (e.g., acetylcholine) and non-traditional (e.g., bile acids) muscarinic ligands. In this review, we weigh the data supporting a prominent role for key protein kinases downstream of M3R activation in promoting colon cancer progression and dissemination. Specifically, we explore the roles that downstream activation of the mitogen activated protein kinase/extracellular signal-related kinase (MAPK/ERK), protein kinase C, p38 MAPK, and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathways play in mediating colon cancer cell proliferation, survival, migration and invasion. We assess the impact of M3R-stimulated induction of selected matrix metalloproteinases germane to these hallmarks of colon cancer progression. In this context, we also critically review the reproducibility of findings derived from a variety of in vivo and in vitro colon cancer models, and their fidelity to human disease. Finally, we summarize the therapeutic potential of targeting various steps from ligand-M3R interaction to the activation of key downstream molecules.

1999 ◽  
Vol 337 (2) ◽  
pp. 275 ◽  
Author(s):  
Jee-Young KIM ◽  
Myung-Soon YANG ◽  
Chun-Do OH ◽  
Kyong-Tai KIM ◽  
Mahn Joon HA ◽  
...  

2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 405-405
Author(s):  
Dawei Li ◽  
Ping Wei ◽  
Zhihai Peng ◽  
Chen Huang ◽  
Huamei Tang ◽  
...  

405 Background: The mammalian Forkhead Box (Fox) transcription factor FOXM1 is implicated in tumorigenesis including mouse intestinal cancer. However, the clinical significance of FOXM1 signaling in human colorectal cancer (CRC) pathogenesis remains unknown. Methods: We investigated FOXM1 expression in 203 cases of primary colon cancer and matched normal colon tissue specimens and explored the underlying mechanisms of altered FOXM1 expression and the impact of this altered expression on colon cancer growth and metastasis using in vitro and animal models of colon cancer. Results: We found weak expression of FOXM1 protein in the colon mucosa, whereas we observed strong FOXM1 expression in tumor-cell nuclei of colon cancer and lymph node metastases. A Cox proportional hazards model revealed that FOXM1 expression was an independent prognostic factor in multivariate analysis. Experimentally, overexpression of FOXM1 by gene transfer significantly promoted the growth and metastasis of colon cancer cells in orthotopic mouse models, whereas knockdown of FOXM1 expression by small interfering RNA did the opposite. Promotion of colon tumorigenesis by FOXM1 directly and significantly correlated with activation of urokinase plasminogen activator receptor (PLAUR) expression and elevation of invasion and metastasis. Conclusions: Given the importance of FOXM1 in regulation of the expression of genes key to cancer biology, dysregulated expression and activation of FOXM1 may play important roles in colon cancer progression and metastasis.


2011 ◽  
Author(s):  
Joshua E. Hughes ◽  
Sarah Radel ◽  
Vasudha Sundram ◽  
Tyler N. Jepperson ◽  
Michael R.D Koch ◽  
...  

2019 ◽  
Author(s):  
George T. Chen ◽  
Delia F. Tifrea ◽  
Rabi Murad ◽  
Yung Lyou ◽  
Ali Mortazavi ◽  
...  

AbstractThe recent classification of colon cancer into molecular subtypes revealed that patients with the poorest prognosis harbor tumors with the lowest levels of Wnt signaling. This is contrary to the long-standing understanding that overactive Wnt signaling promotes tumor progression from early initiation stages through to the later stages including invasion and metastasis. Here, we lower the levels of Wnt signaling in colon cancer via interference with two different steps in the pathway that lie upstream or downstream of the effector protein ß-catenin. We find that these Wnt-reduced cancer cells exhibit a more aggressive disease phenotype, including increased mobility in vitro and localized invasion in an orthotopic mouse model. RNA sequencing reveals that interference with Wnt signaling leads to an upregulation of gene programs that favor cell migration and invasion. We identify a set of upregulated genes common among the Wnt perturbations and find that elevated expression of these genes is strongly predictive of poor patient outcomes in early-invasive colon cancer. These genes may have clinical applications as patient biomarkers or new drug targets to be used in concert with existing therapies.One Sentence SummaryLow Wnt Signaling Leads to Invasive Tumor Phenotypes in Colorectal Cancer.


Author(s):  
Shruthi Sanjitha Sampath ◽  
Sivaramakrishnan Venkatabalsubramanian ◽  
Satish Ramalingam

: MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies, by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.


MicroRNA ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Jeyalakshmi Kandhavelu ◽  
Kumar Subramanian ◽  
Amber Khan ◽  
Aadilah Omar ◽  
Paul Ruff ◽  
...  

Background:Globally, colorectal cancer (CRC) is the third most common cancer in women and the fourth most common cancer in men. Dysregulation of small non-coding miRNAs have been correlated with colon cancer progression. Since there are increasing reports of candidate miRNAs as potential biomarkers for CRC, this makes it important to explore common miRNA biomarkers for colon cancer. As computational prediction of miRNA targets is a critical initial step in identifying miRNA: mRNA target interactions for validation, we aim here to construct a potential miRNA network and its gene targets for colon cancer from previously reported candidate miRNAs, inclusive of 10 up- and 9 down-regulated miRNAs from tissues; and 10 circulatory miRNAs. </P><P> Methods: The gene targets were predicted using DIANA-microT-CDS and TarBaseV7.0 databases. Each miRNA and its targets were analyzed further for colon cancer hotspot genes, whereupon DAVID analysis and mirPath were used for KEGG pathway analysis.Results:We have predicted 874 and 157 gene targets for tissue and serum specific miRNA candidates, respectively. The enrichment of miRNA revealed that particularly hsa-miR-424-5p, hsa-miR-96-5p, hsa-miR-1290, hsa-miR-224, hsa-miR-133a and has-miR-363-3p present possible targets for colon cancer hallmark genes, including BRAF, KRAS, EGFR, APC, amongst others. DAVID analysis of miRNA and associated gene targets revealed the KEGG pathways most related to cancer and colon cancer. Similar results were observed in mirPath analysis. A new insight gained in the colon cancer network pathway was the association of hsa-mir-133a and hsa-mir-96-5p with the PI3K-AKT signaling pathway. In the present study, target prediction shows that while hsa-mir-424-5p has an association with mostly 10 colon cancer hallmark genes, only their associations with MAP2 and CCND1 have been experimentally validated.These miRNAs and their targets require further evaluation for a better understanding of their associations, ultimately with the potential to develop novel therapeutic targets.


2021 ◽  
Vol 22 (5) ◽  
pp. 2473
Author(s):  
Jang Mi Han ◽  
Jae Kyung Sohng ◽  
Woo-Haeng Lee ◽  
Tae-Jin Oh ◽  
Hye Jin Jung

We recently discovered a novel nargenicin A1 analog, 23-demethyl 8,13-deoxynargenicin (compound 9), with potential anti-cancer and anti-angiogenic activities against human gastric adenocarcinoma (AGS) cells. To identify the key molecular targets of compound 9, that are responsible for its biological activities, the changes in proteome expression in AGS cells following compound 9 treatment were analyzed using two-dimensional gel electrophoresis (2-DE), followed by MALDI/TOF/MS. Analyses using chemical proteomics and western blotting revealed that compound 9 treatment significantly suppressed the expression of cyclophilin A (CypA), a member of the immunophilin family. Furthermore, compound 9 downregulated CD147-mediated mitogen-activated protein kinase (MAPK) signaling pathway, including c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) by inhibiting the expression of CD147, the cellular receptor of CypA. Notably, the responses of AGS cells to CypA knockdown were significantly correlated with the anticancer and antiangiogenic effects of compound 9. CypA siRNAs reduced the expression of CD147 and phosphorylation of JNK and ERK1/2. In addition, the suppressive effects of CypA siRNAs on proliferation, migration, invasion, and angiogenesis induction of AGS cells were associated with G2/M cell cycle arrest, caspase-mediated apoptosis, inhibition of MMP-9 and MMP-2 expression, inactivation of PI3K/AKT/mTOR pathway, and inhibition of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression. The specific interaction between compound 9 and CypA was also confirmed using the drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA) approaches. Moreover, in silico docking analysis revealed that the structure of compound 9 was a good fit for the cyclosporin A binding cavity of CypA. Collectively, these findings provide a novel molecular basis for compound 9-mediated suppression of gastric cancer progression through the targeting of CypA.


Sign in / Sign up

Export Citation Format

Share Document