scholarly journals Targeting the Immune Microenvironment in Lymphomas of B-Cell Origin: From Biology to Clinical Application

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 915 ◽  
Author(s):  
Mulder ◽  
Wahlin ◽  
Österborg ◽  
Palma

In lymphomas of B-cell origin, cancer cells orchestrate an inflammatory microenvironment of immune and stromal cells that sustain the tumor cell survival and growth, known as a tumor microenvironment (TME). The features of the TME differ between the different lymphoma types, ranging from extremely inflammatory, such as in Hodgkin lymphoma, to anergic, leading to immune deficiency and susceptibility to infections, such as in chronic lymphocytic leukemia. Understanding the characteristic features of the TME as well as the interactions between cancer and TME cells has given insight into the pathogenesis of most lymphomas and contributed to identify novel therapeutic targets. Here, we summarize the preclinical data that contributed to clarifying the role of the immune cells in the TME of different types of lymphomas of B-cell origin, and explain how the understanding of the biological background has led to new clinical applications. Moreover, we provide an overview of the clinical results of trials that assessed the safety and efficacy of drugs directly targeting TME immune cells in lymphoma patients.

2021 ◽  
Vol 11 ◽  
Author(s):  
Benedetta Apollonio ◽  
Nikolaos Ioannou ◽  
Despoina Papazoglou ◽  
Alan G. Ramsay

Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ilenia Sana ◽  
Maria Elena Mantione ◽  
Piera Angelillo ◽  
Marta Muzio

In recent years significant progress has been made in the clinical management of chronic lymphocytic leukemia (CLL) as well as other B-cell malignancies; targeting proximal B-cell receptor signaling molecules such as Bruton Tyrosine Kinase (BTK) and Phosphoinositide 3-kinase (PI3Kδ) has emerged as a successful treatment strategy. Unfortunately, a proportion of patients are still not cured with available therapeutic options, thus efforts devoted to studying and identifying new potential druggable targets are warranted. B-cell receptor stimulation triggers a complex cascade of signaling events that eventually drives the activation of downstream transcription factors including Nuclear Factor of Activated T cells (NFAT). In this review, we summarize the literature on the expression and function of NFAT family members in CLL where NFAT is not only overexpressed but also constitutively activated; NFAT controls B-cell anergy and targeting this molecule using specific inhibitors impacts on CLL cell viability. Next, we extend our analysis on other mature B-cell lymphomas where a distinct pattern of expression and activation of NFAT is reported. We discuss the therapeutic potential of strategies aimed at targeting NFAT in B-cell malignancies not overlooking the fact that NFAT may play additional roles regulating the inflammatory microenvironment.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 320-325 ◽  
Author(s):  
L Visser ◽  
A Shaw ◽  
J Slupsky ◽  
H Vos ◽  
S Poppema

Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia. Antibody B-ly 2 can be considered a pan-B cell reagent and generally reacts similar to CD22 antibodies. Antibody B-ly 6 is reactive with the same antigen as CD11c (p150/95), an antigen that is present on hairy cell leukemia, macrophages, and a minor subpopulation of lymphocytes. Antibody B-ly 7 is a unique antibody reactive with 144 Kd antigen present only on hairy cell leukemia and a very small population of normal B lymphocytes. This subpopulation may be the counterpart of hairy cells.


2019 ◽  
Vol 143 (2) ◽  
pp. 112-117 ◽  
Author(s):  
Yueyang Li ◽  
M. James You ◽  
Yaling Yang ◽  
Dongzhi Hu ◽  
Chen Tian

In addition to intrinsic factors, leukemia cell growth is influenced by the surrounding nonhematopoietic cells in the leukemic microenvironment, including fibroblasts, mesenchymal stem cells, vascular cells, and various immune cells. Despite the fact that macrophages are an important component of human innate immunity, tumor-associated macrophages (TAMs) have long been considered as an accomplice promoting tumor growth and metastasis. TAMs are activated by an abnormal malignant microenvironment, polarizing into a specific phenotype and participating in tumor progression. TAMs that exist in the microenvironment of different types of leukemia are called leukemia-associated macrophages (LAMs), which are reported to be associated with the progression of leukemia. This review describes the role of LAMs in different leukemia subtypes.


2020 ◽  
Vol 9 (8) ◽  
pp. 2418
Author(s):  
Roberto Tamma ◽  
Girolamo Ranieri ◽  
Giuseppe Ingravallo ◽  
Tiziana Annese ◽  
Angela Oranger ◽  
...  

Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.


2019 ◽  
Vol 11 ◽  
pp. 251584141986812
Author(s):  
Tanima Bose

Pemphigoid disease is classified according to the phenotypical location of the disease and the presence of different types of antibodies. The ocular distribution of pemphigoid mainly occurs in patients with bullous pemphigoid and mucous membrane pemphigoid. Several immune cells, including the cells of the innate immune system (neutrophils and γδ T cells) and the adaptive immune system (T and B cells), are involved in pemphigoid disease. The treatment of pemphigoid is still wide-ranging, and the most utilized treatment is the use of immunosuppressants and corticosteroids. In this scenario, it is absolutely important to screen the immune cells that are involved in this group of diseases and to determine if a targeted treatment approach is plausible. In conclusion, this review will identify some newer treatment possibilities for the whole spectrum of pemphigoid diseases.


2020 ◽  
Vol 10 ◽  
Author(s):  
Giovanni D’Arena ◽  
Vincenzo De Feo ◽  
Giuseppe Pietrantuono ◽  
Elisa Seneca ◽  
Giovanna Mansueto ◽  
...  

CD200, a transmembrane type Ia glycoprotein belonging to the immunoglobulin protein superfamily, is broadly expressed on a wide variety of cell types, such as B lymphocytes, a subset of T lymphocytes, dendritic cells, endothelial and neuronal cells. It delivers immunosuppressive signals through its receptor CD200R, which is expressed on monocytes/myeloid cells and T lymphocytes. Moreover, interaction of CD200 with CD200R has also been reported to play a role in the regulation of tumor immunity. Overexpression of CD200 has been reported in chronic lymphocytic leukemia (CLL) and hairy cell leukemia but not in mantle cell lymphoma, thus helping to better discriminate between these different B cell malignancies with different prognosis. In this review, we focus on the role of CD200 expression in the differential diagnosis of mature B-cell neoplasms and on the prognostic significance of CD200 expression in CLL, where conflicting results have been published so far. Of interest, increasing evidences indicate that anti-CD200 treatment might be therapeutically beneficial for treating CD200-expressing malignancies, such as CLL.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 773-773
Author(s):  
Dirk Kienle ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
Annett Habermann ◽  
...  

Abstract V3-21 gene usage defines a distinct genetic subgroup of chronic lymphocytic leukemia (CLL) characterized by a poor clinical outcome regardless of the VH mutation status. V3-21 cases exhibit a highly characteristic B-cell receptor (BCR) structure as demonstrated by homologous CDR3 sequences and a restricted use of VL genes implicating a common antigen involved in tumor pathogenesis of this specific CLL subgroup. To investigate the role of antigenic stimulation in the pathogenesis of V3-21 using CLL, we analyzed the quantitative expression of genes involved in BCR signaling (ZAP-70, SYK, BLNK, LYN, PI3K, PLCG2, FOS), B-cell activation (TRAF3, STAT6, NFKB), and cell cycle or apoptosis control (ATM, BCL-2, BAX, CDK4, CCND1, CCND2, CCND3, p27, E2F1, MYC) in V3-21 cases in comparison to VH mutated (VH MUT) and VH unmutated (VH UM) cases not using the V3-21 gene. To obtain native expression signatures we studied a non-CD19-purified (nPU) cohort (V3-21: 18 cases, equally divided into VH mutated and VH unmutated cases; VH MUT: 17; VH UM: 19) and, for verification, a CD19-purified (PU) cohort (V3-21: 10 cases, equally divided into VH mutated and unmutated; VH MUT: 12; VH UM: 16) to exclude a contamination of the results by non-tumor cells. All cases were analyzed by FISH for +3q, 6q-, +8q, 11q-, +12q, 13q-, 17p-, and t(11;14) to avoid major imbalances of genomic alterations between the subgroups under study. As expected, ZAP-70 expression was higher in VH UM as compared to VH MUT cases in the nPU (p=0.007) as well as the PU cohort (p=0.009). V3-21 cases showed a higher ZAP-70 expression as compared to VH MUT (nPU: p=0.033; PU: p=0.038). This applied also when restricting this comparison to V3-21 mutated cases (nPU: p=0.018). Median ZAP-70 expression in the PU cohort was 1.15 in VH MUT vs. 7.69 in VH UM cases, as compared to 7.05 in V3-21 cases (V3-21 mutated cases: 10.69; V3-21 unmutated: 6.7). Other genes differentially expressed between the V3-21 and VH MUT subgroups in nPU cases were PI3K (p=0.048), PLCG2 (p=0.007), CCND2 (p=0.003), p27 (p=0.003), BCL-2 (p=0.025), and ATM (p=0.006). In addition, a set of genes was detected with a differential expression between V3-21 and VH UM (nPU) including PLCG2 (p=0.014), NFKB (p=0.023), CCND2 (p=0.001), p27 (0.002), and BAX (p=0.028). Notably, except for ZAP-70, all of the differentially expressed genes showed a lower expression in V3-21 as compared to the other subgroups. When comparing the V3-21 mutated and V3-21 unmutated subgroups (nPU), there were no significant gene expression differences except for CDK4, which showed a lower expression in V3-21 unmutated cases. Therefore, cases with V3-21 usage appear to show a rather homogeneous gene expression pattern independently of the VH mutation status, which can be distinguished from VH MUT and VH UM cases not using V3-21. The expression differences observed suggest a role of differential BCR signaling in the pathogenesis of this distinct CLL subgroup. Deregulation of cell cycle, apoptosis, and candidate genes such as ATM indicate the involvement of additional pathways in the pathogenesis of CLL cases using V3-21.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3134-3134
Author(s):  
Carol Moreno ◽  
Rajendra Damle ◽  
Sonia Jansa ◽  
Gerardo Ferrer ◽  
Pau Abrisqueta ◽  
...  

Abstract The Fcgamma receptors (FcγRs) are a family of molecules that modulate immune responses. FcγRIIb is an inhibitory FcγR that bears immunoreceptor tyrosine-based inhibitory motifs which transduce inhibitory signals on coligation with the surface membrane Ig of the B-cell antigen receptor (BCR). The role of FcγRIIb in controlling B cell activation through inhibition of BCR signaling has been extensively studied in animal models. Nevertheless, data on FcγRIIb are scant in human normal and neoplastic B cells, this being due to the lack of a specific antibody for human FcγRIIb. Consequently, there is little information on this receptor in chronic lymphocytic leukemia (CLL). Considering the activated nature of CLL cells and the central role of the BCR in the biology of the disease, studies of FcγRs are warranted. We used a novel specific mAb directly conjugated with Alexa 488 fluorophore that solely reacts with the human FcγRIIb (MacroGenics, Inc.) to investigate the receptors expression on CLL and normal human B cells. The study population included 84 patients with CLL and 24 age- and sex-matched controls. FcγRIIb expression was assessed as the mean fluorescence intensity (MFI) of surface membrane staining. In CLL cells, FcγRIIb was measured on CD19+CD5+ cells in combination with CD38, CD49d or CD69. Normal B cells were immunostained for CD19, CD5, IgD and CD38 expression and B cell subsets: naïve (IgD+CD38−), activated (IgD+CD38+) and memory B cells (IgD−CD38−) were studied for their relative expression of FcγRIIb. FcγRIIb expression was found significantly higher in naïve B cells compared to activated and memory B cells [median MFI: 17420 (11960–21180) vs. 11.140 (7899–16970) and 11.830 (6984–17100); p<0.001]. Significant differences were also observed between CD5− and CD5+ normal B cells. In contrast, FcγRIIb expression was lower in CLL cells than in CD5+ and CD5− normal B lymphocytes [median MFI: 6901(1034–42600), 10180 (5856–14820) and 12120 (7776–16040); p<0.05)]. Interestingly, FcγRIIb expression was variable within individual CLL clones, this being higher in CD38+ and CD49d+ cells than in CD38− and CD49d− cells (p<0.05). Furthermore, the highest density of FcγRIIb was observed on those cells which coexpressed CD38 and CD49d. In contrast, no significant differences were observed between FcγRIIb and the expression of the activation antigen CD69. Although CD69 and CD38 expression was significantly higher on unmutated IGHV cases, no correlation was found between FcγRIIb levels and IGHV mutational status. Similarly, there was no correlation between FcγRIIb and other poor prognostic variables such as ZAP-70 (≥20%), CD38 (≥ 30%) or high risk cytogenetics. Nevertheless, cases with ≥ 30% CD49d+ cells had higher FcγRIIb expression than those with <30% CD49d+ cells (p=0.006). The findings presented in this study suggest a hierarchy of FcγRIIb expression in normal B-cells, CLL cells and their subpopulations: circulating normal CD5− B cells > circulating normal CD5+ B cells > circulating CD5+ CLL B cells. In addition, although FcγRIIb is present on all normal B cell subsets its expression is higher in naïve B cells. Furthermore, in CLL FcγRIIb density is greater in CD38+ and CD49d+ cells within the clone. Although CD49d and FcγRIIb on CLL clones is linked in a direct manner, there is no relationship with FcγRIIb density and IGHV mutations, ZAP-70, CD38 and unfavorable cytogenetic markers. Finally, the relationship between FcγRIIb expression on CLL cells and functional responses to BCR and other receptor-mediated signals deserve further investigation.


2004 ◽  
Vol 379 (3) ◽  
pp. 513-525 ◽  
Author(s):  
Lori A. PASSMORE ◽  
David BARFORD

The role of protein ubiquitylation in the control of diverse cellular pathways has recently gained widespread attention. Ubiquitylation not only directs the targeted destruction of tagged proteins by the 26 S proteasome, but it also modulates protein activities, protein–protein interactions and subcellular localization. An understanding of the components involved in protein ubiquitylation (E1s, E2s and E3s) is essential to understand how specificity and regulation are conferred upon these pathways. Much of what we know about the catalytic mechanisms of protein ubiquitylation comes from structural studies of the proteins involved in this process. Indeed, structures of ubiquitin-activating enzymes (E1s) and ubiquitin-conjugating enzymes (E2s) have provided insight into their mechanistic details. E3s (ubiquitin ligases) contain most of the substrate specificity and regulatory elements required for protein ubiquitylation. Although several E3 structures are available, the specific mechanistic role of E3s is still unclear. This review will discuss the different types of ubiquitin signals and how they are generated. Recent advances in the field of protein ubiquitylation will be examined, including the mechanisms of E1, E2 and E3. In particular, we discuss the complexity of molecular recognition required to impose selectivity on substrate selection and topology of poly-ubiquitin chains.


Sign in / Sign up

Export Citation Format

Share Document