scholarly journals Lambda-Carrageenan Enhances the Effects of Radiation Therapy in Cancer Treatment by Suppressing Cancer Cell Invasion and Metastasis through Racgap1 Inhibition

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1192 ◽  
Author(s):  
Ping-Hsiu Wu ◽  
Yasuhito Onodera ◽  
Frances C. Recuenco ◽  
Amato J. Giaccia ◽  
Quynh-Thu Le ◽  
...  

Radiotherapy is used extensively in cancer treatment, but radioresistance and the metastatic potential of cancer cells that survive radiation remain critical issues. There is a need for novel treatments to improve radiotherapy. Here, we evaluated the therapeutic benefit of λ-carrageenan (CGN) to enhance the efficacy of radiation treatment and investigated the underlying molecular mechanism. CGN treatment decreased viability in irradiated cancer cells and enhanced reactive oxygen species accumulation, apoptosis, and polyploid formation. Additionally, CGN suppressed radiation-induced chemoinvasion and invasive growth in 3D lrECM culture. We also screened target molecules using a gene expression microarray analysis and focused on Rac GTPase-activating protein 1 (RacGAP1). Protein expression of RacGAP1 was upregulated in several cancer cell lines after radiation, which was significantly suppressed by CGN treatment. Knockdown of RacGAP1 decreased cell viability and invasiveness after radiation. Overexpression of RacGAP1 partially rescued CGN cytotoxicity. In a mouse xenograft model, local irradiation followed by CGN treatment significantly decreased tumor growth and lung metastasis compared to either treatment alone. Taken together, these results suggest that CGN may enhance the effectiveness of radiation in cancer therapy by decreasing cancer cell viability and suppressing both radiation-induced invasive activity and distal metastasis through downregulating RacGAP1 expression.

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Wei-Ta Chen ◽  
Nancy D Ebelt ◽  
Travis H Stracker ◽  
Blerta Xhemalce ◽  
Carla L Van Den Berg ◽  
...  

Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.


2020 ◽  
Vol 52 (11) ◽  
pp. 1845-1856
Author(s):  
Inhyub Kim ◽  
Minkyoung Kim ◽  
Min Kyung Park ◽  
Ravi Naik ◽  
Jae Hyung Park ◽  
...  

AbstractTargeting cancer metabolism has emerged as an important cancer therapeutic strategy. Here, we describe the synthesis and biological evaluation of a novel class of hypoxia-inducible factor (HIF)-1α inhibitors, disubstituted adamantyl derivatives. One such compound, LW1564, significantly suppressed HIF-1α accumulation and inhibited the growth of various cancer cell lines, including HepG2, A549, and HCT116. Measurements of the oxygen consumption rate (OCR) and ATP production rate revealed that LW1564 suppressed mitochondrial respiration, thereby increasing the intracellular oxygen concentration to stimulate HIF-1α degradation. LW1564 also significantly decreased overall ATP levels by inhibiting mitochondrial electron transport chain (ETC) complex I and downregulated mammalian target of rapamycin (mTOR) signaling by increasing the AMP/ATP ratio, which increased AMP-activated protein kinase (AMPK) phosphorylation. Consequently, LW1564 promoted the phosphorylation of acetyl-CoA carboxylase, which inhibited lipid synthesis. In addition, LW1564 significantly inhibited tumor growth in a HepG2 mouse xenograft model. Taken together, the results indicate that LW1564 inhibits the growth of cancer cells by targeting mitochondrial ETC complex I and impairing cancer cell metabolism. We, therefore, suggest that LW1564 may be a potent therapeutic agent for a subset of cancers that rely on oxidative phosphorylation for ATP generation.


2020 ◽  
Vol 21 (16) ◽  
pp. 5658
Author(s):  
Kyoung-Hwa Lee ◽  
Byung-Chan Kim ◽  
Seung-Hwan Jeong ◽  
Chang Wook Jeong ◽  
Ja Hyeon Ku ◽  
...  

Histone demethylase KDM7A regulates many biological processes, including differentiation, development, and the growth of several cancer cells. Here, we have focused on the role of KDM7A in bladder cancer cells, especially under drug-resistant conditions. When the KDM7A gene was knocked down, bladder cancer cell lines showed impaired cell growth, increased cell death, and reduced rates of cell migration. Biochemical studies revealed that KDM7A knockdown in the bladder cancer cells repressed the activity of androgen receptor (AR) through epigenetic regulation. When we developed a cisplatin-resistant bladder cancer cell line, we found that AR expression was highly elevated. Upon treatment with TC-E 5002, a chemical inhibitor of KDM7A, the cisplatin-resistant bladder cancer cells, showed decreased cell proliferation. In the mouse xenograft model, KDM7A knockdown or treatment with its inhibitor reduced the growth of the bladder tumor. We also observed the upregulation of KDM7A expression in patients with bladder cancer. The findings suggest that histone demethylase KDM7A mediates the growth of bladder cancer. Moreover, our findings highlight the therapeutic potential of the KMD7A inhibitor, TC-E 5002, in patients with cisplatin-resistant bladder cancer.


2020 ◽  
Vol 10 ◽  
Author(s):  
Guang-Quan Liang ◽  
Jing Liu ◽  
Xiao-Xin Zhou ◽  
Ze-Xiong Lin ◽  
Tao Chen ◽  
...  

Monoclonal antibodies (mAbs) are large and have limitations as cancer therapeutics. Human single-chain variable fragment (scFv) is a small antibody as a good alternative. It can easily enter cancer tissues, has no immunogenicity and can be produced in bacteria to decrease the cost. The chemokine receptor CXCR4 is overexpressed in different cancer cells. It plays an important role in tumor growth and metastasis. Its overexpression is associated with poor prognosis in cancer patients and is regarded as an attractive target for cancer treatment. In this study, a peptide on the CXCR4 extracellular loop 2 (ECL2) was used as an antigen for screening a human scFv antibody library by yeast two-hybrid method. Three anti-CXCR4 scFv antibodies were isolated. They could bind to CXCR4 protein and three cancer cell lines (DU145, PC3, and MDA-MB-231) and not to 293T and 3T3 cells as negative controls. These three scFvs could decrease the proliferation, migration, and invasion of these cancer cells and promote their apoptosis. The two scFvs were further examined in a mouse xenograft model, and they inhibited the tumor growth. Tumor immunohistochemistry also demonstrated that the two scFvs decreased cancer cell proliferation and tumor angiogenesis and increased their apoptosis. These results show that these anti-CXCR4 scFvs can decrease cancer cell proliferation and inhibit tumor growth in mice, and may provide therapy for various cancers.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Zhou ◽  
Meiyue Liu ◽  
Xia Li ◽  
Peng Zhang ◽  
Jiong Li ◽  
...  

Abstract Background Increased reactive oxygen species (ROS) production by arsenic treatment in solid tumors showed to be effective to sensitize cancer cells to chemotherapies. Arsenic nano compounds are known to increase the ROS production in solid tumors. Methods In this study we developed arsenic–ferrosoferric oxide conjugated Nano Complex (As2S2–Fe3O4, AFCNC) to further promote the ROS induction ability of arsenic reagent in solid tumors. We screen for the molecular pathways that are affect by arsenic treatment in ESCC cancer cells. And explored the underlying molecular mechanism for the arsenic mediated degradations of the key transcription factor we identified in the gene microarray screen. Mouse xenograft model were used to further verify the synthetic effects of AFCNC with chemo and radiation therapies, and the molecular target of arsenic treatment is verified with IHC analysis. Results With gene expression microarray analysis we found Hippo signaling pathway is specifically affected by arsenic treatment, and induced ubiquitination mediated degradation of YAP in KYSE-450 esophageal squamous cell carcinoma (ESCC) cells. Mechanistically we proved PML physically interacted with YAP, and arsenic induced degradation PML mediated the degradation of YAP in ESCC cells. As a cancer stem cell related transcription factor, YAP 5SA over expressions in cancer cells are correlated with resistance to chemo and radiation therapies. We found AFCNC treatment inhibited the increased invasion and migration ability of YAP 5SA overexpressing KYSE-450 cells. AFCNC treatment also effectively reversed protective effects of YAP 5SA overexpression against cisplatin induced apoptosis in KYSE-450 cells. Lastly, with ESCC mouse xenograft model we found AFCNC combined with cisplatin treatment or radiation therapy significantly reduced the tumor volumes in vivo in the xenograft ESCC tumors. Conclusions Together, these findings suggested besides ROS, YAP is a potential target for arsenic based therapy in ESCC, which should play an important role in the synthetic effects of arsenic nano complex with chemo and radiation therapy.


2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.


2018 ◽  
Vol 46 (4) ◽  
pp. 1737-1747 ◽  
Author(s):  
Yue Zhang ◽  
Qingyuan Zhang ◽  
Zhongru Cao ◽  
Yuanxi Huang ◽  
Shaoqiang Cheng ◽  
...  

Background/Aims: Homeobox D3 (HOXD3) is a member of the homeobox family of genes that is known primarily for its transcriptional regulation of morphogenesis in all multicellular organisms. In this study, we sought to explore the role that HOXD3 plays in the stem-like capacity, or stemness, and drug resistance of breast cancer cells. Methods: Expression of HOXD3 in clinical breast samples were examined by RT-PCR and immunohistochemistry. HOXD3 expression in breast cancer cell lines were analyzed by RT-PCR and western blot. Ability of drug resistance in breast cancer cells were elevated by MTT cell viability and colony formation assays. We examined stemness using cell fluorescent staining, RT-PCR and western blot for stem cell marker expression. Finally, activity of wnt signaling was analyzed by FOPflash luciferase assays. RT-PCR and western blot were performed for downstream genes of wnt signaling. Results: We demonstrated that HOXD3 is overexpressed in breast cancer tissue as compared to normal breast tissue. HOXD3 overexpression enhances breast cancer cell drug resistance. Furthermore, HOXD3 upregulation in the same cell lines increased sphere formation as well as the expression levels of stem cell biomarkers, suggesting that HOXD3 does indeed increase breast cancer cell stemness. Because we had previously shown that HOXD3 expression is closely associated with integrin β3 expression in breast cancer patients, we hypothesized that HOXD3 may regulate breast cancer cell stemness and drug resistance through integrin β 3. Cell viability assays showed that integrin β 3 knockdown increased cell viability and that HOXD3 could not restore cancer cell stemness or drug resistance. Given integrin β 3’s relationship with Wnt/β-catenin signaling, we determine whether HOXD3 regulates integrin β 3 activity through Wnt/β-catenin signaling. We found that, even though HOXD3 increased the expression of Wnt/β-catenin downstream genes, it did not restore Wnt/β-catenin signaling activity, which was inhibited in integrin β3 knockdown breast cancer cells. Conclusion: We demonstrate that HOXD3 plays a critical role in breast cancer stemness and drug resistance via integrin β3-mediated Wnt/β-catenin signaling. Our findings open the possibility for improving the current standard of care for breast cancer patients by designing targeted molecular therapies that overcome the barriers of cancer cell stemness and drug resistance.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1648
Author(s):  
Anie P. Masilamani ◽  
Viviane Dettmer-Monaco ◽  
Gianni Monaco ◽  
Toni Cathomen ◽  
Irina Kuckuck ◽  
...  

Background: Upregulation of anti-apoptotic Bcl-2 proteins in advanced prostate cancer leads to therapeutic resistance by prevention of cell death. New therapeutic approaches aim to target the Bcl-2 proteins for the restoration of apoptosis. Methods: The immunotoxin hD7-1(VL-VH)-PE40 specifically binds to the prostate specific membrane antigen (PSMA) on prostate cancer cells and inhibits protein biosynthesis. It was tested with respect to its effects on the expression of anti-apoptotic Bcl-2 proteins. Combination with the BAD-like mimetic ABT-737 was examined on prostate cancer cells and 3D spheroids and in view of tumor growth and survival in the prostate cancer SCID mouse xenograft model. Results: The immunotoxin led to a specific inhibition of Mcl-1 and Bcl2A1 expression in PSMA expressing target cells. Its combination with ABT-737, which inhibits Bcl-2, Bcl-xl, and Bcl-w, led to an induction of the intrinsic apoptotic pathway and to a synergistic cytotoxicity in prostate cancer cells and 3D spheroids. Furthermore, combination therapy led to a significantly prolonged survival of mice bearing prostate cancer xenografts based on an inhibition of tumor growth. Conclusion: The combination therapy of anti-PSMA immunotoxin plus ABT-737 represents the first tumor-specific therapeutic approach on the level of Bcl-2 proteins for the induction of apoptosis in prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document