scholarly journals A Novel Role for NUAK1 in Promoting Ovarian Cancer Metastasis through Regulation of Fibronectin Production in Spheroids

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1250 ◽  
Author(s):  
Jamie Lee Fritz ◽  
Olga Collins ◽  
Parima Saxena ◽  
Adrian Buensuceso ◽  
Yudith Ramos Valdes ◽  
...  

Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-NUAK1KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-NUAK1KO spheroids. In fact, the FN1 gene, encoding fibronectin, exhibited a 745-fold decreased expression in NUAK1KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in NUAK1KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-NUAK1KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.

2019 ◽  
Author(s):  
Adrian Buensuceso ◽  
Yudith Ramos Valdes ◽  
Gabriel E. DiMattia ◽  
Trevor G. Shepherd

ABSTRACTEpithelial ovarian cancer (EOC) spreads by direct dissemination of malignant cells and multicellular clusters, known as spheroids, into the peritoneum followed by implantation and growth on abdominal surfaces. Using a spheroid model system of EOC metastasis, we discovered that Liver kinase B1 (LKB1), encoded by theSTK11gene, and its canonical substrate AMP-activated protein kinase (AMPK) are activated in EOC spheroids, yet only LKB1 is required for cell survival. We have now generatedSTK11-knockout cell lines using normal human FT190 cells and three EOC cell lines, OVCAR8, HeyA8, and iOvCa147.STK11KO did not affect growth and viability in adherent culture, but it decreased anchorage-independent growth of EOC cells. EOC spheroids lacking LKB1 had markedly impaired growth and viability, whereas there was no difference in normal FT190 spheroids. To test whether LKB1 loss affects EOC metastasis, we performed intraperitoneal injections of OVCAR8-, HeyA8-, and iOvCa147-STK11KO cells, and respective controls. LKB1 loss exhibited a dramatic reduction on tumour burden and metastatic potential; in particular, OVCAR8-STK11KO tumours had evidence of extensive necrosis, apoptosis and hypoxia. Interestingly, LKB1 loss did not affect AMPKα phosphorylation in EOC spheroids and tumour xenografts, indicating that LKB1 signaling to support EOC cell survival in spheroids and metastatic tumour growth occurs via other downstream mediators. We identified the dual-specificity phosphatase DUSP4 as a commonly upregulated protein due to LKB1 loss; indeed,DUSP4knockdown in HeyA8-STK11KO cells restored spheroid formation and viability. Our results strongly indicate that intact LKB1 activity independent of downstream AMPK signaling is required during EOC metastasis.


2020 ◽  
Author(s):  
Yahui Jiang ◽  
Tianjiao Lyu ◽  
Hua Liu ◽  
Lifei Shen ◽  
Yiwen Shi ◽  
...  

Abstract Purpose: Ovarian cancer, manifested by malignant ascites, is the most lethal gynaecological cancer. Suspended ascites-derived spheroids may contribute to ovarian cancer metastasis. MicroRNAs (miRNAs) are also associated with ovarian cancer metastasis. Here, we aimed to investigate the differentially expressed miRNAs (DE-miRNAs) in ascites-derived spheroids compared with primary tumour tissue, which may regulate ovarian cancer metastasis.Methods: The DE-miRNAs between ovarian cancer primary tumour tissues and ascites-derived spheroids were identified by GEO2R screening in dataset GSE65819. We used MiRTarBase and STRING to predict the target hub genes of DE-miRNAs and WebGestalt to perform functional analysis of hub genes. ALGGEN PROMO and TransmiR v2.0 were used to predict the common transcription factors (TFs) that potentially regulate DE-miRNAs expression. The observed differences in DE-miRNAs expression were validated with human ovarian cancer samples and ovarian cancer cell lines using PCR. The functions of DE-miRNAs on ovarian cancer progression were verified by transwell and angiogenesis assays.Results: Through bioinformatics screening and experimental validation, miR-199a-3p, miR-199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p were identified as being significantly downregulated in ascites-derived spheroids compared with primary tumour tissues. In addition, TFAP2A was identified as a potentially common upstream TF regulating the expression of the abovementioned DE-miRNAs. The overexpression of miR-199a-3p, miR-199b-3p, miR-199a-5p could inhibit ovarian cancer invasion, and the overexpression of miR-145-5p could inhibit angiogenesis.Conclusion: The downregulated expression of miR-199a-3p, miR-199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p in ascites-derived spheroids plays a key role in promoting ovarian cancer progression, which may represent novel molecules for targeted therapy for ovarian cancer.


2016 ◽  
Vol 23 (11) ◽  
pp. T155-T168 ◽  
Author(s):  
C Ricciardelli ◽  
N A Lokman ◽  
M P Ween ◽  
M K Oehler

Ovarian cancer has a distinct tendency for metastasising via shedding of cancerous cells into the peritoneal cavity and implanting onto the peritoneum that lines the pelvic organs. Once ovarian cancer cells adhere to the peritoneal cells, they migrate through the peritoneal layer and invade the local organs. Alterations in the extracellular environment are critical for tumour initiation, progression and intra-peritoneal dissemination. To increase our understanding of the molecular mechanisms involved in ovarian cancer metastasis and to identify novel therapeutic targets, we recently studied the interaction of ovarian cancer and peritoneal cells using a proteomic approach. We identified several extracellular matrix (ECM) proteins including, fibronectin, TGFBI, periostin, annexin A2 and PAI-1 that were processed as a result of the ovarian cancer–peritoneal cell interaction. This review focuses on the functional role of these proteins in ovarian cancer metastasis. Our findings together with published literature support the notion that ECM processing via the plasminogen–plasmin pathway promotes the colonisation and attachment of ovarian cancer cells to the peritoneum and actively contributes to the early steps of ovarian cancer metastasis.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1228 ◽  
Author(s):  
Maree Bilandzic ◽  
Adam Rainczuk ◽  
Emma Green ◽  
Nicole Fairweather ◽  
Thomas W. Jobling ◽  
...  

Epithelial ovarian cancer metastasis is driven by spheroids, which are heterogeneous cancer cell aggregates released from the primary tumour mass that passively disseminate throughout the peritoneal cavity to promote tumour spread, disease recurrence, and acquired chemoresistance. Despite their clinical importance, the molecular events that control spheroid attachment and invasion into underlying healthy tissues remain poorly understood. We examined a novel in vitro invasion model using imaging mass spectrometry to establish a “snapshot” of the spheroid/mesothelial interface. Amongst numerous adhesion-related proteins, we identified a sub-population of highly motile, invasive cells that expressed the basal epithelial marker KRT14 as an absolute determinant of invasive potential. The loss of KRT14 completely abrogated the invasive capacity, but had no impact on cell viability or proliferation, suggesting an invasion-specific role. Our data demonstrate KRT14 cells as an ovarian cancer “leader cell” phenotype underlying tumor invasion, and suggest their importance as a clinically relevant target in directed anti-tumour therapies.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2238
Author(s):  
Ayon A. Hassan ◽  
Margarita Artemenko ◽  
Maggie K.S. Tang ◽  
Alice S.T. Wong

Ovarian cancer is the most lethal gynecological malignancy worldwide. Unlike most other tumor types that metastasize via the vasculature, ovarian cancer metastasizes predominantly via the transcoelomic route within the peritoneal cavity. As cancer metastasis accounts for the majority of deaths, there is an urge to better understand its determinants. In the peritoneal cavity, tumor-mesothelial adhesion is an important step for cancer dissemination. Selectins are glycan-binding molecules that facilitate early steps of this adhesion cascade by mediating heterotypic cell-cell interaction under hydrodynamic flow. Here, we review the function and regulation of selectins in peritoneal carcinomatosis of ovarian cancer, and highlight how dysregulation of selectin ligand biogenesis affects disease outcome. Further, we will introduce the latest tools in studying selectin-glycan interaction. Finally, an overview of potential therapeutic intervention points that may lead to the development of efficacious therapies for ovarian cancer is provided.


2020 ◽  
Author(s):  
Yahui Jiang ◽  
Tianjiao Lyu ◽  
Hua Liu ◽  
Lifei Shen ◽  
Yiwen Shi ◽  
...  

Abstract Purpose: Ovarian cancer, manifested by malignant ascites, is the most lethal gynaecological cancer. Suspended ascites-derived spheroids may contribute to ovarian cancer metastasis. MicroRNAs (miRNAs) are also associated with ovarian cancer metastasis. Here, we aimed to investigate the differentially expressed miRNAs (DE-miRNAs) in ascites-derived spheroids compared with primary tumour tissue, which may regulate ovarian cancer metastasis. Methods: The DE-miRNAs between ovarian cancer primary tumour tissues and ascites-derived spheroids were identified by GEO2R screening in dataset GSE65819. We used MiRTarBase, TargetScanHuman7.2 and STRING to predict the target hub genes of DE-miRNAs and DAVID to perform functional analysis of hub genes. ALGGEN PROMO and TransmiR v2.0 were used to predict the common transcription factors (TFs) that potentially regulate DE-miRNAs expression. The observed differences in DE-miRNAs expression were validated with human ovarian cancer samples and ovarian cancer cell lines using PCR. The functions of DE-miRNAs on ovarian cancer progression were verified by transwell and angiogenesis assays. Results: Through bioinformatics screening and experimental validation, miR-199a-3p, miR-199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p were identified as being significantly downregulated in ascites-derived spheroids compared with primary tumour tissues. In addition, TFAP2A was identified as a potentially common upstream TF regulating the expression of the abovementioned DE-miRNAs. The overexpression of miR-199a-3p, miR-199b-3p, miR-199a-5p could inhibit ovarian cancer invasion, and the overexpression of miR-145-5p could inhibit angiogenesis. Conclusion: The downregulated expression of miR-199a-3p, miR-199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p in ascites-derived spheroids plays a key role in promoting ovarian cancer progression, which may represent novel molecules for targeted therapy for ovarian cancer.


Author(s):  
Conghui Wang ◽  
Jiaying Wang ◽  
Xiameng Shen ◽  
Mingyue Li ◽  
Yongfang Yue ◽  
...  

Abstract Background Metastasis is the key cause of death in ovarian cancer patients. To figure out the biological nature of cancer metastasis is essential for developing effective targeted therapy. Here we investigate how long non-coding RNA (lncRNA) SPOCD1-AS from ovarian cancer extracellular vesicles (EVs) remodel mesothelial cells through a mesothelial-to-mesenchymal transition (MMT) manner and facilitate peritoneal metastasis. Methods EVs purified from ovarian cancer cells and ascites of patients were applied to mesothelial cells. The MMT process of mesothelial cells was assessed by morphology observation, western blot analysis, migration assay and adhesion assay. Altered lncRNAs of EV-treated mesothelial cells were screened by RNA sequencing and identified by qRT-PCR. SPOCD1-AS was overexpressed or silenced by overexpression lentivirus or shRNA, respectively. RNA pull-down and RNA immunoprecipitation assays were conducted to reveal the mechanism by which SPOCD1-AS remodeled mesothelial cells. Interfering peptides were synthesized and applied. Ovarian cancer orthotopic implantation mouse model was established in vivo. Results We found that ovarian cancer-secreted EVs could be taken into recipient mesothelial cells, induce the MMT phenotype and enhance cancer cell adhesion to mesothelial cells. Furthermore, SPOCD1-AS embedded in ovarian cancer-secreted EVs was transmitted to mesothelial cells to induce the MMT process and facilitate peritoneal colonization in vitro and in vivo. SPOCD1-AS induced the MMT process of mesothelial cells via interacting with G3BP1 protein. Additionally, G3BP1 interfering peptide based on the F380/F382 residues was able to block SPOCD1-AS/G3BP1 interaction, inhibit the MMT phenotype of mesothelial cells, and diminish peritoneal metastasis in vivo. Conclusions Our findings elucidate the mechanism associated with EVs and their cargos in ovarian cancer peritoneal metastasis and may provide a potential approach for metastatic ovarian cancer therapeutics.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii278-iii278
Author(s):  
Viktoria Melcher ◽  
Monika Graf ◽  
Marta Interlandi ◽  
Natalia Moreno ◽  
Flavia W de Faria ◽  
...  

Abstract Atypical teratoid/rhabdoid tumors (ATRT) are pediatric brain neoplasms that are known for their heterogeneity concerning pathophysiology and outcome. The three genetically rather uniform but epigenetically distinct molecular subgroups of ATRT alone do not sufficiently explain the clinical heterogeneity. Therefore, we examined the tumor microenvironment (TME) in the context of tumor diversity. By using multiplex-immunofluorescent staining and single-cell RNA sequencing (scRNA-seq) we unveiled the pan-macrophage marker CD68 as a subgroup-independent negative prognostic marker for survival of ATRT patients. ScRNA-seq analysis of murine ATRT-SHH, ATRT-MYC and extracranial RT (eRT) provide a delineation of the TME, which is predominantly infiltrated by myeloid cells: more specifically a microglia-enriched niche in ATRT-SHH and a bone marrow-derived macrophage infiltration in ATRT-MYC and eRT. Exploring the cell-cell communication of tumor cells with tumor-associated immune cells, we found that Cd68+ tumor-associated macrophages (TAMs) are central to intercellular communication with tumor cells. Moreover, we uncovered distinct tumor phenotypes in murine ATRT-MYC that share genetic traits with TAMs. These intermediary cells considerably increase the intratumoral heterogeneity of ATRT-MYC tumors. In vitro co-culture experiments recapitulated the capability of ATRT-MYC cells to interchange cell material with macrophages extensively, in contrast to ATRT-SHH cells. We found that microglia are less involved in the exchange of information with ATRT cells and that direct contact is a prerequisite for incorporation. A relapse xenograft model implied that intermediary cells are involved in the acquisition of chemotherapy resistance. We show evidence that TAM-tumor cell interaction is one mechanism of chemotherapy resistance and relapse in ATRT.


2018 ◽  
Vol 11 ◽  
pp. 117906441876788 ◽  
Author(s):  
Lynn Roy ◽  
Alexander Bobbs ◽  
Rachel Sattler ◽  
Jeffrey L Kurkewich ◽  
Paige B Dausinas ◽  
...  

Cancer stem cells (CSCs) are an attractive therapeutic target due to their predicted role in both metastasis and chemoresistance. One of the most commonly agreed on markers for ovarian CSCs is the cell surface protein CD133. CD133+ ovarian CSCs have increased tumorigenicity, resistance to chemotherapy, and increased metastasis. Therefore, we were interested in defining how CD133 is regulated and whether it has a role in tumor metastasis. Previously we found that overexpression of the transcription factor, ARID3B, increased the expression of PROM1 (CD133 gene) in ovarian cancer cells in vitro and in xenograft tumors. We report that ARID3B directly regulates PROM1 expression. Importantly, in a xenograft mouse model of ovarian cancer, knockdown of PROM1 in cells expressing exogenous ARID3B resulted in increased survival time compared with cells expressing ARID3B and a control short hairpin RNA. This indicated that ARID3B regulation of PROM1 is critical for tumor growth. Moreover, we hypothesized that CD133 may affect metastatic spread. Given that the peritoneal mesothelium is a major site of ovarian cancer metastasis, we explored the role of PROM1 in mesothelial attachment. PROM1 expression increased adhesion to mesothelium in vitro and ex vivo. Collectively, our work demonstrates that ARID3B regulates PROM1 adhesion to the ovarian cancer metastatic niche.


2006 ◽  
Vol 32 (5) ◽  
pp. 449-453 ◽  
Author(s):  
Pierre Collinet ◽  
Rodolphe Vereecque ◽  
Frédéric Sabban ◽  
Denis Vinatier ◽  
Eric Leblanc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document