scholarly journals Leukaemia Inhibitory Factor (LIF) Inhibits Cancer Stem Cells Tumorigenic Properties through Hippo Kinases Activation in Gastric Cancer

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2011
Author(s):  
Lornella Seeneevassen ◽  
Julie Giraud ◽  
Silvia Molina-Castro ◽  
Elodie Sifré ◽  
Camille Tiffon ◽  
...  

Cancer stem cells (CSCs) present chemo-resistance mechanisms contributing to tumour maintenance and recurrence, making their targeting of utmost importance in gastric cancer (GC) therapy. The Hippo pathway has been implicated in gastric CSC properties and was shown to be regulated by leukaemia inhibitory factor receptor (LIFR) and its ligand LIF in breast cancer. This study aimed to determine LIF’s effect on CSC properties in GC cell lines and patient-derived xenograft (PDX) cells, which remains unexplored. LIF’s treatment effect on CSC markers expression and tumoursphere formation was evaluated. The Hippo kinase inhibitor XMU-MP-1 and/or the JAK1 inhibitor Ruxolitinib were used to determine Hippo and canonical JAK/STAT pathway involvement in gastric CSCs’ response to LIF. Results indicate that LIF decreased tumorigenic and chemo-resistant CSCs, in both GC cell lines and PDX cells. In addition, LIF increased activation of LATS1/2 Hippo kinases, thereby decreasing downstream YAP/TAZ nuclear accumulation and TEAD transcriptional activity. LIF’s anti-CSC effect was reversed by XMU-MP-1 but not by Ruxolitinib treatment, highlighting the opposite effects of these two pathways downstream LIFR. In conclusion, LIF displays anti-CSC properties in GC, through Hippo kinases activation, and could in fine constitute a new CSCs-targeting strategy to help decrease relapse cases and bad prognosis in GC.

2020 ◽  
Author(s):  
Ru Chen ◽  
Kenji Masuo ◽  
Akitada Yogo ◽  
Shoko Yokoyama ◽  
Aiko Sugiyama ◽  
...  

Abstract Among cancer cells, there are specific cell populations of whose activities are comparable to those of stem cells in normal tissues, and for whom the levels of cell dedifferentiation are reported to correlate with poor prognosis. Information concerning the mechanisms that modulate the stemness like traits of cancer cells is limited. Therefore, we examined five gastric cancer cell lines and isolated gastric oncospheres from three gastric cancer cell lines. The gastric cancer cells that expanded in the spheres expressed relatively elevated proportion of CD44, which is a marker of gastric cancer stem cells, and displayed many properties of cancer stem cells, for example: chemoresistance, tumorigenecity and epithelial-mesenchymal transition (EMT) acquisition. SNAIL, which is a key factor in EMT, was highly expressed in the gastric spheres. Microarray analysis in gastric cancer cell line HGC27 showed that CCN3 and NEFL displayed the greatest differential expression by knocking down of SNAIL; the former was up-regulated and the latter down-regulated, respectively. Down-regulation of CCN3 and up-regulation of NEFL gene expression impaired the SNAIL-dependent EMT activity: high tumorigenicity, and chemoresistance in gastric cancer cells. Thus, approach that disrupts SNAIL/CCN3/NEFL axis may be credible in inhibiting gastric cancer development.


2021 ◽  
Vol 28 (3) ◽  
pp. 2150-2172
Author(s):  
Ritu Shrestha ◽  
Kim R. Bridle ◽  
Lu Cao ◽  
Darrell H. G. Crawford ◽  
Aparna Jayachandran

Sorafenib, an oral multi-tyrosine kinase inhibitor, has been the first-line therapy for the treatment of patients with advanced HCC, providing a survival benefit of only three months in approximately 30% of patients. Cancer stem cells (CSCs) are a rare tumour subpopulation with self-renewal and differentiation capabilities, and have been implicated in tumour growth, recurrence and drug resistance. The process of epithelial-to-mesenchymal transition (EMT) contributes to the generation and maintenance of the CSC population, resulting in immune evasion and therapy resistance in several cancers, including HCC. The aim of this study is to target the chemoresistant CSC population in HCC by assessing the effectiveness of a combination treatment approach with Sorafenib, an EMT inhibitor and an immune checkpoint inhibitor (ICI). A stem-cell-conditioned serum-free medium was utilised to enrich the CSC population from the human HCC cell lines Hep3B, PLC/PRF/5 and HepG2. The anchorage independent spheres were characterised for CSC features. The human HCC-derived spheres were assessed for EMT status and expression of immune checkpoint molecules. The effect of combination treatment with SB431542, an EMT inhibitor, and siRNA-mediated knockdown of programmed cell death protein ligand-1 (PD-L1) or CD73 along with Sorafenib on human HCC-derived CSCs was examined with cell viability and apoptosis assays. The three-dimensional spheres enriched from human HCC cell lines demonstrated CSC-like features. The human HCC-derived CSCs also exhibited the EMT phenotype along with the upregulation of immune checkpoint molecules. The combined treatment with SB431542 and siRNA-mediated PD-L1 or CD73 knockdown effectively enhanced the cytotoxicity of Sorafenib against the CSC population compared to Sorafenib alone, as evidenced by the reduced size and proliferation of spheres. Furthermore, the combination treatment of Sorafenib with SB431542 and PD-L1 or CD73 siRNA resulted in an increased proportion of an apoptotic population, as evidenced by flow cytometry analysis. In conclusion, the combined targeting of EMT and immune checkpoint molecules with Sorafenib can effectively target the CSC tumour subpopulation.


Background and aim: Helicobacter pylori (H. pylori) is an incriminated pathogen causing diseases in both animals and humans and considered a zoonotic pathogen. H. pylori infection is considered a cause of gastric cancer, which rests a significant health care challenge. This study analyzes the expression pattern of matrix metalloprotein 2 (MMP-2) in patients with Helicobacter pylori-associated gastritis and the effect of H. pylori on gastric cancer stem cells, as well as study the role of helicon bacteriosis in dog in transmission of H. pylori infection to human. Materials and methods: Fifty-five of each sample (gastric biopsy, blood and stool) were collected from patients suffering from dyspepsia, chronic vomiting and perforated peptic ulcers and also from apparent healthy dogs. The investigation detected H. pylori by serological and histopathological examination. Biopsies were stored in physiological saline for identification of H. pylori by conventional time PCR. MMP-2 and Gastric cancer stem cells were then identified by immunohistochemistry. Results: Serological identification for H. pylori Antigen and Antibodies revealed (63% human, 50% dogs) and (87% human, 90% dogs) respectively were positive. Genotyping of H. pylori based on 16S rRNA gene showed 54.5% of human and 35% of dogs were positive. Immunohistochemistry revealed strong expression of CD44 in H. pylori- associated gastric cancer cases, MMP-2 expression was observed in all neoplastic lesions associated with H. pylori infection. Conclusion: H. pylori infection affects gastric mucosa and induces changes in gastric stem cells altering their differentiation and increased expression of MMP’s and CD44with a resultant potentiation of oncogenic alteration. In addition the up-regulation of both markers could be an instrumental to interpret the origination of gastric cancer.


Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


2021 ◽  
Vol 15 ◽  
pp. 117822342110349
Author(s):  
Namita Kundu ◽  
Xinrong Ma ◽  
Stephen Hoag ◽  
Fang Wang ◽  
Ahmed Ibrahim ◽  
...  

The taro plant, Colocasia esculenta, contains bioactive proteins with potential as cancer therapeutics. Several groups have reported anti-cancer activity in vitro and in vivo of taro-derived extracts (TEs). We reported that TE inhibits metastasis in a syngeneic murine model of Triple-Negative Breast Cancer (TNBC). Purpose: We sought to confirm our earlier studies in additional models and to identify novel mechanisms by which efficacy is achieved. Methods: We employed a panel of murine and human breast and ovarian cancer cell lines to determine the effect of TE on tumor cell viability, migration, and the ability to support cancer stem cells. Two syngeneic models of TNBC were employed to confirm our earlier report that TE potently inhibits metastasis. Cancer stem cell assays were employed to determine the ability of TE to inhibit tumorsphere-forming ability and to inhibit aldehyde dehydrogenase activity. To determine if host immunity contributes to the mechanism of metastasis inhibition, efficacy was assessed in immune-compromised mice. Results: We demonstrate that viability of some, but not all cell lines is inhibited by TE. Likewise, tumor cell migration is inhibited by TE. Using 2 immune competent, syngeneic models of TNBC, we confirm our earlier findings that tumor metastasis is potently inhibited by TE. We also demonstrate, for the first time, that TE directly inhibits breast cancer stem cells. Administration of TE to mice elicits expansion of several spleen cell populations but it was not known if host immune cells contribute to the mechanism by which TE inhibits tumor cell dissemination. In novel findings, we now show that the ability of TE to inhibit metastasis relies on immune T-cell-dependent, but not B cell or Natural Killer (NK)-cell-dependent mechanisms. Thus, both tumor cell-autonomous and host immune factors contribute to the mechanisms underlying TE efficacy. Our long-term goal is to evaluate TE efficacy in clinical trials. Most of our past studies as well as many of the results reported in this report were carried out using an isolation protocol described earlier (TE). In preparation for a near future clinical trial, we have now developed a strategy to isolate an enriched taro fraction, TE-method 2, (TE-M2) as well as a more purified subfraction (TE-M2F1) which can be scaled up under Good Manufacturing Practice (GMP) conditions for evaluation in human subjects. We demonstrate that TE-M2 and TE-M2F1 retain the anti-metastatic properties of TE. Conclusions: These studies provide further support for the continued examination of biologically active components of Colocasia esculenta as potential new therapeutic entities and identify a method to isolate sufficient quantities under GMP conditions to conduct early phase clinical studies.


2013 ◽  
Vol 28 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Marica Gemei ◽  
Rosa Di Noto ◽  
Peppino Mirabelli ◽  
Luigi Del Vecchio

In colorectal cancer, CD133+ cells from fresh biopsies proved to be more tumorigenic than their CD133– counterparts. Nevertheless, the function of CD133 protein in tumorigenic cells seems only marginal. Moreover, CD133 expression alone is insufficient to isolate true cancer stem cells, since only 1 out of 262 CD133+ cells actually displays stem-cell capacity. Thus, new markers for colorectal cancer stem cells are needed. Here, we show the extensive characterization of CD133+ cells in 5 different colon carcinoma continuous cell lines (HT29, HCT116, Caco2, GEO and LS174T), each representing a different maturation level of colorectal cancer cells. Markers associated with stemness, tumorigenesis and metastatic potential were selected. We identified 6 molecules consistently present on CD133+ cells: CD9, CD29, CD49b, CD59, CD151, and CD326. By contrast, CD24, CD26, CD54, CD66c, CD81, CD90, CD99, CD112, CD164, CD166, and CD200 showed a discontinuous behavior, which led us to identify cell type-specific surface antigen mosaics. Finally, some antigens, e.g. CD227, indicated the possibility of classifying the CD133+ cells into 2 subsets likely exhibiting specific features. This study reports, for the first time, an extended characterization of the CD133+ cells in colon carcinoma cell lines and provides a “dictionary” of antigens to be used in colorectal cancer research.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Silvia La Monica ◽  
Claudia Fumarola ◽  
Daniele Cretella ◽  
Mara Bonelli ◽  
Roberta Minari ◽  
...  

Abemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or -independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention. In these models, abemaciclib inhibited cell growth, spheroid formation, colony formation, and induced senescence, and its efficacy was not enhanced in the presence of osimertinib. Interestingly, in osimertinib sensitive PC9, PC9T790M, and H1975 cells the combination of abemaciclib with osimertinib significantly inhibited the onset of resistance in long-term experiments. Our findings provide a preclinical support for using abemaciclib to treat resistance in EGFR mutated NSCLC patients progressed to osimertinib either as single treatment or combined with osimertinib, and suggest the combination of osimertinib with abemaciclib as a potential approach to prevent or delay osimertinib resistance in first-line treatment.


Author(s):  
Kalyani Patil ◽  
Farheen B. Khan ◽  
Sabah Akhtar ◽  
Aamir Ahmad ◽  
Shahab Uddin

AbstractThe ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyu Wang ◽  
Doudou Liu ◽  
Zhiwei Sun ◽  
Ting Ye ◽  
Jingyuan Li ◽  
...  

AbstractIt has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.


Sign in / Sign up

Export Citation Format

Share Document