scholarly journals Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2252 ◽  
Author(s):  
Elizabeth Varghese ◽  
Samson Mathews Samuel ◽  
Alena Líšková ◽  
Marek Samec ◽  
Peter Kubatka ◽  
...  

Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.

Author(s):  
Abdel Qader Al Bawab ◽  
Malek Zihlif ◽  
Yazan Jarrar ◽  
Ahmad Saleh

Background: Hypoxia (deprived oxygen in tissues) may induce molecular and genetic changes in cancer cells. Objective: Investigating the genetic changes of glucose metabolism in breast cancer cell line (MCF7) after exposure to continuous hypoxia (10 and 20 cycles exposure of 72 hours continuously on a weekly basis). Method: Gene expression of MCF7 cells was evaluated using real-time polymerase chain reaction- array method. Furthermore, cell migration and wound healing assays were also applied. Results: It was found that 10 episodes of continuous hypoxia activated Warburg effect in MCF7 cells via the significant up-regulation of genes involved in glycolysis (ANOVA, p value < 0.05). The molecular changes were associated with the ability of MCF7 cells to divide and migrate. Interestingly, after 20 episodes of continuous hypoxia, the expression glycolysis mediated genes has dropped significantly (from 30 to 9 folds). This could be attributed to the adaptive ability of cancer cells. Conclusion: It is concluded that 10 hypoxic episodes increased the survival rate and the aggressiveness of MCF7 cells and induced Warburg effect by up-regulation of the glycolysis mediating genes expression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saber Yari Bostanabad ◽  
Senem Noyan ◽  
Bala Gur Dedeoglu ◽  
Hakan Gurdal

Abstractβ-Arrestins (βArrs) are intracellular signal regulating proteins. Their expression level varies in some cancers and they have a significant impact on cancer cell function. In general, the significance of βArrs in cancer research comes from studies examining GPCR signalling. Given the diversity of different GPCR signals in cancer cell regulation, contradictory results are inevitable regarding the role of βArrs. Our approach examines the direct influence of βArrs on cellular function and gene expression profiles by changing their expression levels in breast cancer cells, MDA-MB-231 and MDA-MB-468. Reducing expression of βArr1 or βArr2 tended to increase cell proliferation and invasion whereas increasing their expression levels inhibited them. The overexpression of βArrs caused cell cycle S-phase arrest and differential expression of cell cycle genes, CDC45, BUB1, CCNB1, CCNB2, CDKN2C and reduced HER3, IGF-1R, and Snail. Regarding to the clinical relevance of our results, low expression levels of βArr1 were inversely correlated with CDC45, BUB1, CCNB1, and CCNB2 genes compared to normal tissue samples while positively correlated with poorer prognosis in breast tumours. These results indicate that βArr1 and βArr2 are significantly involved in cell cycle and anticancer signalling pathways through their influence on cell cycle genes and HER3, IGF-1R, and Snail in TNBC cells.


Author(s):  
Noha Gwili ◽  
Stacey J. Jones ◽  
Waleed Al Amri ◽  
Ian M. Carr ◽  
Sarah Harris ◽  
...  

Abstract Background Breast cancer stem cells (BCSCs) are drivers of therapy-resistance, therefore are responsible for poor survival. Molecular signatures of BCSCs from primary cancers remain undefined. Here, we identify the consistent transcriptome of primary BCSCs shared across breast cancer subtypes, and we examine the clinical relevance of ITGA7, one of the genes differentially expressed in BCSCs. Methods Primary BCSCs were assessed using immunohistochemistry and fluorescently labelled using Aldefluor (n = 17). Transcriptomes of fluorescently sorted BCSCs and matched non-stem cancer cells were determined using RNA-seq (n = 6). ITGA7 expression was examined in breast cancers using immunohistochemistry (n = 305), and its functional role was tested using siRNA in breast cancer cells. Results Proportions of BCSCs varied from 0 to 9.4%. 38 genes were significantly differentially expressed in BCSCs; genes were enriched for functions in vessel morphogenesis, motility, and metabolism. ITGA7 was found to be significantly downregulated in BCSCs, and low expression significantly correlated with reduced survival in patients treated with chemotherapy, and with chemoresistance in breast cancer cells in vitro. Conclusions This study is the first to define the molecular profile of BCSCs from a range of primary breast cancers. ITGA7 acts as a predictive marker for chemotherapy response, in accordance with its downregulation in BCSCs.


Endocrinology ◽  
2021 ◽  
Author(s):  
Yuanzhong Wang ◽  
Shiuan Chen

Abstract Estrogen and estrogen receptor (ER) play a fundamental role in breast cancer. To adapt the rapid proliferation of ER+ breast cancer cells, estrogen increases glucose uptake and reprograms glucose metabolism. Meanwhile, estrogen/ER activates the anticipatory unfolded protein response (UPR) preparing cancer cells for the increased protein production required for subsequent cell proliferation. Here, we report that thioredoxin-interacting protein (TXNIP) is an important regulator of glucose metabolism in ER+ breast cancer cells, and estrogen/ER increases glucose uptake and reprograms glucose metabolism via activating anticipatory unfolded protein response (UPR) and subsequently repressing TXNIP expression. By using two widely used ER+ breast cancer cell lines MCF7 and T47D, we showed that MCF7 cells express high TXNIP levels and exhibit mitochondrial oxidative phosphorylation (OXPHOS) phenotype, while T47D cells express low TXNIP levels and display aerobic glycolysis (Warburg effect) phenotype. Knockdown of TXNIP promoted glucose uptake and Warburg effect, while forced overexpression of TXNIP inhibited glucose uptake and Warburg effect. We further showed that estrogen represses TXNIP expression and activates UPR sensor inositol-requiring enzyme 1 (IRE1) via ER in the breast cancer cells, and IRE1 activity is required for estrogen suppression of TXNIP expression and estrogen-induced cell proliferation. Together, our study suggests that TXNIP is involved in estrogen-induced glucose uptake and metabolic reprogramming in ER+ breast cancer cells, and links anticipatory UPR to estrogen reprogramming glucose metabolism.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2256
Author(s):  
Konstantina Kyriakopoulou ◽  
Eirini Riti ◽  
Zoi Piperigkou ◽  
Konstantina Koutroumanou Sarri ◽  
Heba Bassiony ◽  
...  

Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases’ (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell–cell and cell–matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.


2019 ◽  
Vol 84 (12) ◽  
pp. 3825-3832 ◽  
Author(s):  
Xin‐Xin Chai ◽  
Yi‐Fei Le ◽  
Jun‐Cheng Wang ◽  
Chen‐Xuan Mei ◽  
Jia‐Fan Feng ◽  
...  

2017 ◽  
Vol 268 ◽  
pp. 254-258 ◽  
Author(s):  
Nur Shafawati Rosli ◽  
Azhar Abdul Rahman ◽  
Azlan Abdul Aziz ◽  
Shaharum Shamsuddin ◽  
Nurul Sabihah Zakaria

Ultrastructural characteristic and morphological changes of untreated and treated breast cancer MCF-7 cells were observed by energy-filtered transmission electron microscope (EFTEM). Morphological observation of MCF-7 after being treated with 13 nm, 50 nm, and 70 nm AuNPs, were looking unhealthy and dying out of the populace, the observed cells were more reduced and dying as treatment with 50 nm and 70 nm AuNPs. Cells detachment, clumping, shrunken, and dispersed cells in the culture medium and floating cells were also observed. The observed morphological changes increase in 50 nm and 70 nm AuNPs than in 13 nm AuNPs, which is less toxic to MCF-7 cells. The presented morphological analysis has established that 13 nm AuNPs showed less toxic to MCF-7 breast cancer cells. Whereas, control cells of MCF-7 were treated with only complete culture media, despite the duration of treatment, whereby the cells maintained most of their morphological features and observed to have a typical morphology of healthy cells that are well attached to the surface. These results indicate that AuNPs were clustered in the cells and there was no significant difference between images of different sizes of AuNPs observed in the cells, because the AuNPs always clustered together inside the cells.


2020 ◽  
Vol 20 (10) ◽  
pp. 6561-6567 ◽  
Author(s):  
Bo Zheng ◽  
Minghua Xue ◽  
Xinyi Zhang ◽  
Ning Tian ◽  
Dongmei Wang

Objective: This study aimed to determine the effects of dimer captosuccinic acid-coated Fe3O4 (super paramagnetic) nanoparticles (NP) on 2-deoxy-d-glucose in targeted cancer cells with high rates of glucose metabolism. Methods: We prepared Fe3O4@DMSA NP and 2-DG-conjugated Fe3O4@DMSA NP, γ-FE, O, and @DMSA-DG NP. Glucose consumption in MDA-MB-231 and MCF-7 breast cancer cells was determined using γ-Fe2O3@DMSA NP or Fe3O4@DMSA-DG NP, and absorption was tested using Prussian blue staining, ultraviolet colorimetry, and magnetic resonance imaging. Results: Glucose consumption was the highest in MDA-MB-231, and the lowest in human mammary epithelial cells (HMEPiC). The significant uptake of Fe2O3@DMSA-DG NP by MDA-MB-231 and MCF-7 cells within two hours was inhibited by glucose. The uptake of Fe3O4@DMSA-DG NP was significantly higher in MDA-MB-231 than in MCF-7 cells, whereas Fe3O4@DMSA NP was not obviously uptaken by either cell line. Absorption was also not evident in HMEPiC incubated with Fe3O4@DMSA-DG NP and Fe3O4@DMSA NP. Conclusions: The tumor targeting efficacy of 2-DG coated Fe3O4@DMSA NP was improved over Fe3O4,@DMSA NP in cancer cells with high rates of glucose metabolism.


Sign in / Sign up

Export Citation Format

Share Document