scholarly journals Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3244
Author(s):  
Ricardo Pérez-Tomás ◽  
Isabel Pérez-Guillén

Cancer is a complex disease that includes the reprogramming of metabolic pathways by malignant proliferating cells, including those affecting the tumor microenvironment (TME). The “TME concept” was introduced in recognition of the roles played by factors other than tumor cells in cancer progression. In response to the hypoxic or semi-hypoxic characteristic of the TME, cancer cells generate a large amount of lactate via the metabolism of glucose and glutamine. Export of this newly generated lactate by the tumor cells together with H+ prevents intracellular acidification but acidifies the TME. In recent years, the importance of lactate and acidosis in carcinogenesis has gained increasing attention, including the role of lactate as a tumor-promoting metabolite. Here we review the existing literature on lactate metabolism in tumor cells and the ability of extracellular lactate to direct the metabolic reprogramming of those cells. Studies demonstrating the roles of lactate in biological processes that drive or sustain carcinogenesis (tumor promotion, angiogenesis, metastasis and tumor resistance) and lactate’s role as an immunosuppressor that contributes to tumor evasion are also considered. Finally, we consider recent therapeutic efforts using available drugs directed at and interfering with lactate production and transport in cancer treatment.

2021 ◽  
Vol 14 ◽  
Author(s):  
Saurabh Satija ◽  
Harpreet Kaur ◽  
Murtaza M. Tambuwala ◽  
Prabal Sharma ◽  
Manish Vyas ◽  
...  

Hypoxia is an integral part of tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mchanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors.


2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


Author(s):  
Maria M. Haykal ◽  
Clara Nahmias ◽  
Christine Varon ◽  
Océane C. B. Martin

Cancer is a complex disease and it is now clear that not only epithelial tumor cells play a role in carcinogenesis. The tumor microenvironment is composed of non-stromal cells, including endothelial cells, adipocytes, immune and nerve cells, and a stromal compartment composed of extracellular matrix, cancer-associated fibroblasts and mesenchymal cells. Tumorigenesis is a dynamic process with constant interactions occurring between the tumor cells and their surroundings. Even though all connections have not yet been discovered, it is now known that crosstalk between actors of the microenvironment drives cancer progression. Taking into account this complexity, it is important to develop relevant models to study carcinogenesis. Conventional 2D culture models fail to represent the entire tumor microenvironment properly and the use of animal models should be decreased with respect to the 3Rs rule. To this aim, in vitro organotypic models have been significantly developed these past few years. These models have different levels of complexity and allow the study of tumor cells alone or in interaction with the microenvironment actors during the multiple stages of carcinogenesis. This review depicts recent insights into organotypic modeling of the tumor and its microenvironment all throughout cancer progression. It offers an overview of the crosstalk between epithelial cancer cells and their microenvironment during the different phases of carcinogenesis, from the early cell autonomous events to the late metastatic stages. The advantages of 3D over classical 2D or in vivo models are presented as well as the most promising organotypic models. A particular focus is made on organotypic models used for studying cancer progression, from the less complex spheroids to the more sophisticated body-on-a-chip. Last but not least, we address the potential benefits of these models in personalized medicine which is undoubtedly a domain paving the path to new hopes in terms of cancer care and cure.


2019 ◽  
Vol 19 (7) ◽  
pp. 525-533 ◽  
Author(s):  
Bo-Shen Gong ◽  
Rui Wang ◽  
Hong-Xia Xu ◽  
Ming-Yong Miao ◽  
Zhen-Zhen Yao

Cancer is characterized by high mortality and low curability. Recent studies have shown that the mechanism of tumor resistance involves not only endogenous changes to tumor cells, but also to the tumor microenvironment (TME), which provides the necessary conditions for the growth, invasion, and metastasis of cancer cells, akin to Stephen Paget’s hypothesis of “seed and soil.” Hence, the TME is a significant target for cancer therapy via nanoparticles, which can carry different kinds of drugs targeting different types or stages of tumors. The key step of nanotherapy is the achievement of accurate active or passive targeting to trigger drugs precisely at tumor cells, with less toxicity and fewer side effects. With deepened understanding of the tumor microenvironment and rapid development of the nanomaterial industry, the mechanisms of nanotherapy could be individualized according to the specific TME characteristics, including low pH, cancer-associated fibroblasts (CAFs), and increased expression of metalloproteinase. However, some abnormal features of the TME limit drugs from reaching all tumor cells in lethal concentrations, and the characteristics of tumors vary in numerous ways, resulting in great challenges for the clinical application of nanotherapy. In this review, we discuss the essential role of the tumor microenvironment in the genesis and development of tumors, as well as the measures required to improve the therapeutic effects of tumor microenvironment-targeting nanoparticles and ways to reduce damage to normal tissue.


2015 ◽  
Vol 7s1 ◽  
pp. BIC.S25247 ◽  
Author(s):  
Benjamin Y. Owusu ◽  
Mudit Vaid ◽  
Pawan Kaler ◽  
Lidija Klampfer

Colon cancer development and malignant progression are driven by genetic and epigenetic alterations in tumor cells and by factors from the tumor microenvironment. Cancer cells become reliant on the activity of specific oncogenes and on prosurvival and proliferative signals they receive from the abnormal environment they create and reside in. Accordingly, the response to anticancer therapy is determined by genetic and epigenetic changes that are intrinsic to tumor cells and by the factors present in the tumor microenvironment. Recent advances in the understanding of the involvement of the tumor microenvironment in tumor progression and therapeutic response are optimizing the application of prognostic and predictive factors in colon cancer. Moreover, new targets in the tumor microenvironment that are amenable to therapeutic intervention have been identified. Because stromal cells are with rare exceptions genetically stable, the tumor microenvironment has emerged as a preferred target for therapeutic drugs. In this review, we discuss the role of stromal fibroblasts and macrophages in colon cancer progression and in the response of colon cancer patients to therapy.


Author(s):  
Enli Yang ◽  
Xuan Wang ◽  
Zhiyuan Gong ◽  
Miao Yu ◽  
Haiwei Wu ◽  
...  

Abstract Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 432
Author(s):  
Iván Ponce ◽  
Nelson Garrido ◽  
Nicolás Tobar ◽  
Francisco Melo ◽  
Patricio C. Smith ◽  
...  

Breast tumors belong to the type of desmoplastic lesion in which a stiffer tissue structure is a determinant of breast cancer progression and constitutes a risk factor for breast cancer development. It has been proposed that cancer-associated stromal cells (responsible for this fibrotic phenomenon) are able to metabolize glucose via lactate production, which supports the catabolic metabolism of cancer cells. The aim of this work was to investigate the possible functional link between these two processes. To measure the effect of matrix rigidity on metabolic determinations, we used compliant elastic polyacrylamide gels as a substrate material, to which matrix molecules were covalently linked. We evaluated metabolite transport in stromal cells using two different FRET (Fluorescence Resonance Energy Transfer) nanosensors specific for glucose and lactate. Cell migration/invasion was evaluated using Transwell devices. We show that increased stiffness stimulates lactate production and glucose uptake by mammary fibroblasts. This response was correlated with the expression of stromal glucose transporter Glut1 and monocarboxylate transporters MCT4. Moreover, mammary stromal cells cultured on stiff matrices generated soluble factors that stimulated epithelial breast migration in a stiffness-dependent manner. Using a normal breast stromal cell line, we found that a stiffer extracellular matrix favors the acquisition mechanistical properties that promote metabolic reprograming and also constitute a stimulus for epithelial motility. This new knowledge will help us to better understand the complex relationship between fibrosis, metabolic reprogramming, and cancer malignancy.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 180
Author(s):  
Christina Mertens ◽  
Matthias Schnetz ◽  
Claudia Rehwald ◽  
Stephan Grein ◽  
Eiman Elwakeel ◽  
...  

Macrophages supply iron to the breast tumor microenvironment by enforced secretion of lipocalin-2 (Lcn-2)-bound iron as well as the increased expression of the iron exporter ferroportin (FPN). We aimed at identifying the contribution of each pathway in supplying iron for the growing tumor, thereby fostering tumor progression. Analyzing the expression profiles of Lcn-2 and FPN using the spontaneous polyoma-middle-T oncogene (PyMT) breast cancer model as well as mining publicly available TCGA (The Cancer Genome Atlas) and GEO Series(GSE) datasets from the Gene Expression Omnibus database (GEO), we found no association between tumor parameters and Lcn-2 or FPN. However, stromal/macrophage-expression of Lcn-2 correlated with tumor onset, lung metastases, and recurrence, whereas FPN did not. While the total iron amount in wildtype and Lcn-2−/− PyMT tumors showed no difference, we observed that tumor-associated macrophages from Lcn-2−/− compared to wildtype tumors stored more iron. In contrast, Lcn-2−/− tumor cells accumulated less iron than their wildtype counterparts, translating into a low migratory and proliferative capacity of Lcn-2−/− tumor cells in a 3D tumor spheroid model in vitro. Our data suggest a pivotal role of Lcn-2 in tumor iron-management, affecting tumor growth. This study underscores the role of iron for tumor progression and the need for a better understanding of iron-targeted therapy approaches.


2017 ◽  
Vol 313 (6) ◽  
pp. R646-R653 ◽  
Author(s):  
Mohamad Assi

The large doses of vitamins C and E and β-carotene used to reduce reactive oxygen species (ROS) production and oxidative damages in cancerous tissue have produced disappointing and contradictory results. This therapeutic conundrum was attributed to the double-faced role of ROS, notably, their ability to induce either proliferation or apoptosis of cancer cells. However, for a ROS-inhibitory approach to be effective, it must target ROS when they induce proliferation rather than apoptosis. On the basis of recent advances in redox biology, this review underlined a differential regulation of prooxidant and antioxidant system, respective to the stage of cancer. At early precancerous and neoplastic stages, antioxidant activity decreases and ROS appear to promote cancer initiation via inducing oxidative damage and base pair substitution mutations in prooncogenes and tumor suppressor genes, such as RAS and TP53, respectively. Whereas in late stages of cancer progression, tumor cells escape apoptosis by producing high levels of intracellular antioxidants, like NADPH and GSH, via the pentose phosphate pathway to buffer the excessive production of ROS and related intratumor oxidative injuries. Therefore, antioxidants should be prohibited in patients with advanced stages of cancer and/or undergoing anticancer therapies. Interestingly, the biochemical and biophysical properties of some polyphenols allow them to selectively recognize tumor cells. This characteristic was exploited to design and deliver nanoparticles coated with low doses of polyphenols and containing chemotherapeutic drugs into tumor-bearing animals. First results are encouraging, which may revolutionize the conventional use of antioxidants in cancer.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5557
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier ◽  
Jean-Noël Vallée

The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.


Sign in / Sign up

Export Citation Format

Share Document