scholarly journals Bromamine T (BAT) Exerts Stronger Anti-Cancer Properties than Taurine (Tau)

Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 182
Author(s):  
Stella Baliou ◽  
Maria Goulielmaki ◽  
Petros Ioannou ◽  
Christina Cheimonidi ◽  
Ioannis P. Trougakos ◽  
...  

Background: Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. Methods: We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. Results: We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. Conclusions: BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.

2000 ◽  
Vol 278 (4) ◽  
pp. C697-C708 ◽  
Author(s):  
Sergey Chupreta ◽  
Ming Du ◽  
Andrea Todisco ◽  
Juanita L. Merchant

Epidermal growth factor (EGF) receptor activation stimulates gastrin gene expression through a GC-rich element called gastrin EGF response element (gERE). This element is bound by Sp1 family members and is a target of the ras-extracellular signal-regulated kinase (Erk) signal transduction cascade. This raised the possibility that Sp1 may be phosphorylated by kinases of this signaling pathway. Erk is capable of phosphorylating other mitogen-inducible transcription factors, e.g., Elk and Sap, suggesting that Erk may also mediate EGF-dependent phosphorylation of Sp1. This possibility was tested by studying Sp1-dependent kinase activity in extracts prepared from EGF-activated AGS cells by use of solid-phase kinase assays and immunoprecipitation of metabolically labeled Sp1. The results revealed that Sp1 kinase activity (like gastrin promoter activation) is inhibited by PD-98059 and, therefore, is dependent on mitogen-activated protein kinase kinase 1 (Mek 1). However, EGF-dependent activation of endogenous Erk did not account for most of the Sp1 kinase activity, since Erk and additional Sp1 kinase activity analyzed in a solid-phase kinase assay eluted from an ion-exchange column in different fractions. Phosphoamino acid analysis of in vivo radiolabeled Sp1 demonstrated that the kinase phosphorylates Sp1 on Ser and Thr in response to EGF. Therefore, most EGF-stimulated Sp1 kinase activity is Mek 1 dependent and distinct from Erk.


2005 ◽  
Vol 25 (2) ◽  
pp. 854-864 ◽  
Author(s):  
Sandrine Marchetti ◽  
Clotilde Gimond ◽  
Jean-Claude Chambard ◽  
Thomas Touboul ◽  
Danièle Roux ◽  
...  

ABSTRACT Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1.


2004 ◽  
Vol 15 (10) ◽  
pp. 4457-4466 ◽  
Author(s):  
Eric Bind ◽  
Yelena Kleyner ◽  
Dorota Skowronska-Krawczyk ◽  
Emily Bien ◽  
Brian David Dynlacht ◽  
...  

Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.


2004 ◽  
Vol 24 (3) ◽  
pp. 1081-1095 ◽  
Author(s):  
Nicole H. Purcell ◽  
Dina Darwis ◽  
Orlando F. Bueno ◽  
Judith M. Müller ◽  
Roland Schüle ◽  
...  

ABSTRACT The mitogen-activated protein kinase (MAPK) signaling pathway regulates diverse biologic functions including cell growth, differentiation, proliferation, and apoptosis. The extracellular signal-regulated kinases (ERKs) constitute one branch of the MAPK pathway that has been implicated in the regulation of cardiac differentiated growth, although the downstream mechanisms whereby ERK signaling affects this process are not well characterized. Here we performed a yeast two-hybrid screen with ERK2 bait and a cardiac cDNA library to identify novel proteins involved in regulating ERK signaling in cardiomyocytes. This screen identified the LIM-only factor FHL2 as an ERK interacting protein in both yeast and mammalian cells. In vivo, FHL2 and ERK2 colocalized in the cytoplasm at the level of the Z-line, and interestingly, FHL2 interacted more efficiently with the activated form of ERK2 than with the dephosphorylated form. ERK2 also interacted with FHL1 and FHL3 but not with the muscle LIM protein. Moreover, at least two LIM domains in FHL2 were required to mediate efficient interaction with ERK2. The interaction between ERK2 and FHL2 did not influence ERK1/2 activation, nor was FHL2 directly phosphorylated by ERK2. However, FHL2 inhibited the ability of activated ERK2 to reside within the nucleus, thus blocking ERK-dependent transcriptional responsiveness of ELK-1, GATA4, and the atrial natriuretic factor promoter. Finally, FHL2 partially antagonized the cardiac hypertrophic response induced by activated MEK-1, GATA4, and phenylephrine agonist stimulation. Collectively, these results suggest that FHL2 serves a repressor function in cardiomyocytes through its ability to inhibit ERK1/2 transcriptional coupling.


Author(s):  
Max Piffoux ◽  
Erwan Eriau ◽  
Philippe A. Cassier

Abstract Pancreatic ductal adenocarcinoma (PDAC) is characterised by early metastasis and resistance to anti-cancer therapy, leading to an overall poor prognosis. Despite continued research efforts, no targeted therapy has yet shown meaningful efficacy in PDAC; mutations in the oncogene KRAS and the tumour suppressor TP53, which are the most common genomic alterations in PDAC, have so far shown poor clinical actionability. Autophagy, a conserved process allowing cells to recycle altered or unused organelles and cellular components, has been shown to be upregulated in PDAC and is implicated in resistance to both cytotoxic chemotherapy and targeted therapy. Autophagy is thus regarded as a potential therapeutic target in PDAC and other cancers. Although the molecular mechanisms of autophagy activation in PDAC are only beginning to emerge, several groups have reported interesting results when combining inhibitors of the extracellular-signal-regulated kinase/mitogen-activated protein kinase pathway and inhibitors of autophagy in models of PDAC and other KRAS-driven cancers. In this article, we review the existing preclinical data regarding the role of autophagy in PDAC, as well as results of relevant clinical trials with agents that modulate autophagy in this cancer.


2021 ◽  
Author(s):  
Lanqing Cao ◽  
Guangmeng Xu ◽  
Hongyu He ◽  
Jiannan Li

Abstract Hepatoma is a common clinical disease with poor prognosis and a high recurrence rate. Chemotherapy is important for hepatoma treatment because only a small amount of hepatoma patients are suitable for local resection, and the effects of transarterial chemoembolization (TACE) are unsatisfactory. But many limitations restrict further application of chemotherapy. In this study, sorafenib (Sor) and metformin (Met) co-loaded poly(ethylene glycol)-block-poly(L-glutamic acid-co-L-phenylalanine) (mPEG-b-P(Glu-co-Phe)) micelles were developed. Sor is a common molecular target agent which can inhibit the mitogen-activated protein kinase (MAPK) pathway to treat hepatoma clinically. Met can also regulate the MAPK pathway and inhibit the expression of the phosphorylated extracellular signal-regulated kinase (p-ERK). Moreover, both Sor and Met play important roles in cell cycle arrest. The integration of these two drugs aims to achieve synergistic effects against hepatoma. The micelles can be targeted to cancer cells and possess longer blood circulation time. The two agents can be released rapidly in the tumor sites. Both orthotopic and patient-derived xenograft (PDX) hepatoma models were developed to analyze the treatment efficacy of the Sor and Met loaded micelles. The in vivo study showed that the micelles can prevent hepatoma progression by inhibiting the expressions of p-ERK and cyclin D1. This study indicated that the Sor/Met-loaded micelles are suitable for hepatoma treatment.


2001 ◽  
Vol 86 (3) ◽  
pp. 1301-1305 ◽  
Author(s):  
Giulio Ceolotto ◽  
Alessandra Gallo ◽  
Michelangelo Sartori ◽  
Roberto Valente ◽  
Elisabetta Baritono ◽  
...  

Glycemic spikes may negatively affect the long-term prognosis of patients with diabetes. Extracellular signal-regulated kinases (ERKs) are intracellular mediators of cell proliferation, and they can be activated in response to high glucose levels. However, the modifications of their activity in response to hyperglycemia have been poorly investigated, in vivo, in humans. Thus, we sought to determine in circulating monocytes: 1) the role of hyperglycemia in ERKs activity and phosphorylation, and 2) whether hyperglycemia affects mitogen-activated protein kinase kinase (MEK) activity and mitogen-activated protein phosphatase-1 (MKP-1) expression. These goals were performed in five normal subjects. Baseline monocyte ERKs activity was 60 ± 5 pmol/min·mg protein; when exogenous hyperglycemia was induced, both monocyte ERKs activity (81 ± 11 pmol/min·mg protein; P < 0.05) and phosphorylation significantly increased (P < 0.01). MEK activity was significantly increased by hyperglycemia (1251 ± 136 vs. 2000 ± 42 cpm; P = 0.0017), whereas no changes were observed in MKP-1 expression. We conclude that hyperglycemia acutely stimulates ERKs activity and phosphorylation in human monocytes by the MEK pathway in vivo. These findings may be relevant in understanding the negative role of acute hyperglycemia on monocyte pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document