scholarly journals Antitumoral Activity of the MEK Inhibitor Trametinib (TMT212) Alone and in Combination with the CDK4/6 Inhibitor Ribociclib (LEE011) in Neuroendocrine Tumor Cells In Vitro

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1485
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Objectives: This study assessed the antitumoral activity of the MEK inhibitor trametinib (TMT212) and the ERK1/2 inhibitor SCH772984, alone and in combination with the CDK4/6 inhibitor ribociclib (LEE011) in human neuroendocrine tumor (NET) cell lines in vitro. Methods: Human NET cell lines BON1, QGP-1, and NCI-H727 were treated with trametinib or SCH772984, alone and in combination with ribociclib, to assess cell proliferation, cell cycle distribution, and protein signaling using cell proliferation, flow cytometry, and Western blot assays, respectively. Results: Trametinib and SCH772984, alone and in combination with ribociclib, significantly reduced NET cell viability and arrested NET cells at the G1 phase of the cell cycle in all three cell lines tested. In addition, trametinib also caused subG1 events and apoptotic PARP cleavage in QGP1 and NCI-H727 cells. A western blot analysis demonstrated the use of trametinib alone and trametinib in combination with ribociclib to decrease the expression of pERK, cMyc, Chk1, pChk2, pCDK1, CyclinD1, and c-myc in a time-dependent manner in NCI-H727 and QGP-1 cells. Conclusions: MEK and ERK inhibition causes antiproliferative effects in human NET cell lines in vitro. The combination of the MEK inhibitor trametinib (TMT212) with the CDK4/6 inhibitor ribociclib (LEE011) causes additive antiproliferative effects. Future preclinical and clinical studies of MEK inhibition in NETs should be performed.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Frederik Roos ◽  
Katherina Binder ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
August Bernd ◽  
...  

The natural compound curcumin exerts antitumor properties in vitro, but its clinical application is limited due to low bioavailability. Light exposure in skin and skin cancer cells has been shown to improve curcumin bioavailability; thus, the object of this investigation was to determine whether light exposure might also enhance curcumin efficacy in bladder cancer cell lines. RT112, UMUC3, and TCCSUP cells were preincubated with low curcumin concentrations (0.1-0.4μg/ml) and then exposed to 1.65 J/cm2visible light for 5 min. Cell growth, cell proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins along with acetylation of histone H3 and H4 were investigated. Though curcumin alone did not alter cell proliferation or apoptosis, tumor cell growth and proliferation were strongly blocked when curcumin was combined with visible light. Curcumin-light caused the bladder cancer cells to become arrested in different cell phases: G0/G1 for RT112, G2/M for TCCSUP, and G2/M- and S-phase for UMUC3. Proteins of the Cdk-cyclin axis were diminished in RT112 after application of 0.1 and 0.4μg/ml curcumin. Cell cycling proteins were upregulated in TCCSUP and UMUC3 in the presence of 0.1μg/ml curcumin-light but were partially downregulated with 0.4μg/ml curcumin. 0.4μg/ml (but not 0.1μg/ml) curcumin-light also evoked late apoptosis in TCCSUP and UMUC3 cells. H3 and H4 acetylation was found in UMUC3 cells treated with 0.4μg/ml curcumin alone or with 0.1μg/ml curcumin-light, pointing to an epigenetic mechanism. Light exposure enhanced the antitumor potential of curcumin on bladder cancer cells but by different molecular action modes in the different cell lines. Further studies are necessary to evaluate whether intravesical curcumin application, combined with visible light, might become an innovative tool in combating bladder cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyu Wang ◽  
Yuanjian Fang ◽  
Yunxiang Zhou ◽  
Xiaoming Guo ◽  
Ke Xu ◽  
...  

BackgroundNonfunctioning pituitary neuroendocrine tumor (NF-PitNET) is difficult to resect. Except for surgery, there is no effective treatment for NF-PitNET. MicroRNA-134 (miR-134) has been reported to inhibit proliferation and invasion ability of tumor cells. Herein, the mechanism underlying the effect of miR-134 on alleviating NF-PitNET tumor cells growth is explored.MethodsMouse pituitary αT3-1 cells were transfected with miR-134 mimics and inhibitor, followed by treatment with stromal cell-derived factor-1α (SDF-1α) in vitro. MiR-134 expression level: we used quantitative real-time PCR (qRT-PCR) to detect the expression of miR-134. Cell behavior level: cell viability and invasion ability were assessed using a cell counting kit-8 (CCK8) assay and Transwell invasion assay respectively. Cytomolecular level: tumor cell proliferation was evaluated by Ki-67 staining; propidium iodide (PI) staining analyzed the effect of miR-134 on cell cycle arrest; western blot analysis and immunofluorescence staining evaluated tumor migration and invasive ability. Additionally, we collected 27 NF-PitNET tumor specimens and related clinical data. The specimens were subjected to qRT-PCR to obtain the relative miR-134 expression level of each specimen; linear regression analysis was used to analyze the miR-134 expression level in tumor specimens and the age of the NF-PitNET population, gender, tumor invasion, prognosis, and other indicators.ResultsIn vitro experiment, miR-134 was observed to significantly inhibit αT3-1 cells proliferation characterized by inhibited cell viability and expressions of vascular endothelial growth factor A (VEGFA) and cell cycle transition from G1 to S phase (P < 0.01). VEGFA was verified as a target of miR-134. Additionally, miR-134-induced inhibition of αT3-1 cell proliferation and invasion was attenuated by SDF-1α and VEGFA overexpression (P < 0.01). In primary NF-PitNET tumor analysis, miR-134 expression level was negatively correlated with tumor invasion (P = 0.003).ConclusionThe regulation of the SDF-1α/miR-134/VEGFA axis represents a novel mechanism in the pathogenesis of NF-PitNETs and may serve as a potential therapeutic target for the treatment of NF-PitNETs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2576-2576
Author(s):  
Tobias Berg ◽  
Manfred Fliegauf ◽  
Jurij Pitako ◽  
Jan Burger ◽  
Mahmoud Abdelkarim ◽  
...  

Abstract Background: The translocation (8;21) is the most common chromosomal rearrangement in AML, resulting in the expression of the fusion protein AML1/ETO. We have developed an ecdysone-inducible U937 model, in which AML1/ETO is expressed in response to treatment with Ponasterone (Pon) A (Fliegauf et al, Oncogene 2004). This model system was used to determine the cellular effects of AML1/ETO and to identify its target genes in U937 cells. Methods: Effects of AML1/ETO expression upon cell growth, viability, cell cycle and apoptosis were analyzed by trypan blue exclusion, FACS analysis using propidium iodide and DiOC6 staining, DNA laddering and Western blot for PARP cleavage, respectively. The gene expression profile of U937 with and without conditional AML1/ETO expression was assessed using Affymetrix U133A microarrays. Wild-type U937 cells with and without PonA treatment as well as AML1/ETO-negative and AML1/ETO-positive myeloid cell lines served as controls. Northern and Western Blotting were used for validation of expression changes. Results: Induction of AML1/ETO expression in U937 resulted in reduced cell growth, G1 arrest and in apoptosis beginning 48–72 hours after PonA treatment. To investigate the underlying mechanisms, microarray analysis was performed. Expression profiles of AML1/ETO-positive and AML1/ETO-negative cell lines formed distinct clusters. Based on stringent criteria, 191 different genes were found upregulated, whereas 37 were downregulated upon expression of AML1/ETO in U937. The identified genes were screened for genes with known functions in cell cycle and apoptosis by automated and manual review and included 13 apoptosis-related genes. Among them, the CDK inhibitor p21/WAF/CIP1 was upregulated 19-fold upon induction of AML1/ETO, whereas the apoptosis regulator MCL-1 was induced 2.5-fold. Based on our criteria, no differential expression of other transcriptionally-controlled apoptosis regulators (such as BCL2, BAX, BAK1, BAD or c-flip) was noted. Northern and Western Blot analysis confirmed the strong induction of p21/WAF/CIP1 that paralleled the expression of AML1/ETO 10 hours after PonA treatment. Induction of p21/WAF/CIP1 was independent of the tumor suppressor protein p53 (Dou et al., Proc. Natl. Acad. Sci. 1995), and by Western blot, p53 was undetectable in U937. Northern Blot analysis revealed a higher expression of p21/WAF/CIP1 in the AML1/ETO-positive cell lines Kasumi-1 and SKNO-1 than in the AML1/ETO-negative cell lines HL-60, KG-1 and U937, supporting our finding that AML1/ETO may induce p21/WAF/CIP1. Conclusions: AML1/ETO expression resulted in increased expression of p21/WAF/CIP1, which might contribute to the observed growth arrest and induction of apoptosis caused by the conditional expression of AML1/ETO.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5085-5085
Author(s):  
Qingxiao Chen ◽  
Jingsong He ◽  
Xing Guo ◽  
Jing Chen ◽  
Xuanru Lin ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults which is still incurable although novel drugs and new combination of chemotherapies are used . With the development of genetic and molecular biology technologies, more and more genes are found to be related to leukemogenesis and drug resistance of AML. TET2, a member of the ten-eleven-translocation gene family which can modify DNA by catalyzing the conversion of 5-mehtyl-cytosine to 5-hydroxymethyl-cytosine , is often inactivated through mutation or deletion in myeloid malignancies. Recent research reported that TET2 knock-down can promote proliferation of hematopoietic stem cells and leukemic cells. Also, several clinical studies showed that patients with TET2 mutation or low levels of TET2 expression have more aggressive disease courses than those with normal levels of TET2. However, the mechanism of the phenomenon is unknown. Our aim is to uncover how TET2 protein level is negatively correlated with AML cell proliferation and to provide a better view of target therapy in AML. Methods: We determined the expression levels of TET2 and other target genes in acute leukemia cell lines, bone marrow AML specimens, and peripheral blood mononuclear cells from healthy donors by qRT-PCR and Western blot. We also determined the mutation status of TET2 in AML cell lines. CCK8 and flow cytometry were used to determine cell proliferation, cell apoptosis, and cell cycle profile. Methylation-specific PCR were used to examine the methylation status in gene promoter regions. Also, we developed TET2 knock-down lentivirus to transfect AML cell lines to examine the effect of TET2 depletion. Last, RNA-seq was used to compare gene expression level changes between TET2 knock-down cell lines and the control cell lines. Results: AML cells from AML cell lines (KG-1,U937, Kasumi, HL-60, THP-1, and MV4-11) and AML patients' specimens expressed lower levels of TET2 than those of PBMC from the healthy donor (P<0.05). Among AML cell lines, U937 barely expressed TET2, while KG-1 expressed TET2 at a relatively higher level than those of other AML cell lines. We constructed a TET2 shRNA to transfect KG-1,THP-1,MV-4-11,Kasumi,and HL-60, and used qRT-PCR and western blot to verify the knock-down efficiency. CCK8 confirmed that knocking down TET2 could increase leukemia cell proliferation (P<0.05). Flow cytometry showed that cell cycle profile was altered in TET2 knock-down cells compared to the negative control cells. In order to identify target genes, we performed RNA-seq on wildtype and TET2 knockdown KG-1 cells and found that the expression of cell cycle related genes, DNA replication related genes, and some oncogenes were changed. We focused on Pim-1, an oncogene related to leukemogenesis, which was significantly up-regulated in the RNA-seq profile. Western blot and qPCR verified the RNA-seq results of Pim-1 expression in the transfected cells . Also, AML patients' bone marrow samples (n=35) were tested by qPCR and 28 of them were found to express low TET2 but high Pim-1 with the other 7 being opposite. For detailed exploration in expression regulation of Pim-1 via TET2, we screened genes affecting Pim-1 expression and found SHP-1, a tumor suppress gene which is often silenced by promoter methylation in AML. Western blot band of SHP-1 was attenuated in TET2 knockdown KG-1 cells. Moreover, methylation-specific PCR showed that after knocking down TET2 in KG-1 cell line, the promoter regions were methylated much more than the control cells. These results indicated that the function of TET2 in epigenetic modulation plays an important role in regulating Pim-1 expression. Finally, using flow cytometry and CCK8 we surprisingly found that knocking down TET2 expression could lead leukemic cells (KG-1, THP-1 and MV-4-11) more sensitive to Pim-1 inhibitor (SGI-1776 free base) and decitabine (a demethylation agent treating MDS and AML) (P<0.05). Conclusion: Our study showed that knocking down TET2 promoted leukemic cell proliferation. This phenomenon may correlate to Pim-1 up-regulation. Our clinical data also showed that the expression of TET2 and Pim-1 have an inverse relationship. The mechanism of TET2 regulating Pim-1 expression may be related to the epigenetic modulation function of TET2. Finally, we found TET2 downregulation could increase leukemia vulnerability to Pim-1 inhibitor and decitbine, and provide a novel view of target therapy in AML. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tian Zhang ◽  
Xingchen He ◽  
Guodong Yu ◽  
Zhixu He

Background. SHC SH2 domain-binding protein 1 (SHCBP1), one of the members of Src homolog and collagen homolog (Shc) family, has been reported to be overexpressed in several malignant cancers and involved in tumor progression. However, the expression of SHCBP1 in nasopharyngeal carcinoma (NPC) remains unclear, and its clinical significance remains to be further elucidated. Methods. The expression of SHCBP1 mRNA in 35 pair samples of NPC and adjacent normal tissues of NPC was detected by RT-qPCR. The expression level of SHCBP1 protein and mRNA in the selected cells was detected by western blot and RT-qPCR, respectively. The effects of SHCBP1 on NPC in vitro were observed by MTT method, colony formation assay, apoptosis assay, cell cycle assay, wound healing assay, transwell migration assay, and transwell invasion assay. Results. SHCBP1 was highly expressed in clinical tissues and NPC cell lines, and SHCBP1 knockdown significantly inhibited NPC cell proliferation. Overexpression of SHCBP1 promoted NPC cell proliferation, migration, and invasion in NPC cell lines. Silencing SHCBP1 expression can delay cell cycle and inhibit cell apoptosis. Conclusion. Our results suggest that SHCBP1 may promote proliferation and metastasis of NPC cells, which represents that SHCBP1 may act as a new indicator for predicting the prognosis of NPC and a new target for clinical treatment.


2014 ◽  
Vol 9 (3) ◽  
pp. 1934578X1400900
Author(s):  
Siriporn Kittiwisut ◽  
Cristina C. Rohena ◽  
Supreeya Yuenyongsawad ◽  
Susan L. Mooberry ◽  
Anuchit Plubrukarn

The antiproliferative activities of 12-oxoheteronemin and heteronemin were evaluated in six cancer cell lines and IC50 values ranging from 0.66 to 1.35 μM were obtained. In four of the cell lines, 12-oxoheteronemin and heteronemin were equipotent; however, in two estrogenic receptor-positive cell lines, heteronemin showed a stronger potency. Both compounds had no overt effects on cell cycle distribution in HeLa cells, but did rapidly initiate apoptosis as evidenced by increased sub-G1 populations of cells and caspase-dependent PARP cleavage.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 254-254
Author(s):  
Michele Milella ◽  
Maria Rosaria Ricciardi ◽  
Chiara Gregorj ◽  
Fabiana De Cave ◽  
Steven L. Abrams ◽  
...  

Abstract The Raf/MEK/ERK signaling module plays a pivotal role in the regulation of cell proliferation, survival, and differentiation. Our group, among others, has recently demonstrated that this pathway is frequently dysregulated in hematological malignancies and may constitute an attractive therapeutic target, particularly in AML. Here we investigated the effects of PD0325901, a novel MEK inhibitor, on phospho-protein expression, gene expression profiles, cell proliferation, and apoptosis in cell line models of AML, ALL, multiple myeloma (MM), ex vivo-cultured primary AML blasts, and oncogene-transformed hematopoietic cells. AML cell lines (OCI-AML2, OCI-AML3, HL-60) were strikingly sensitive to PD0325901 (IC50: 5–19 nM), NB4 (APL) and U266 (MM) showed intermediate sensitivity (IC50: 822 and 724 nM), while all the lymphoid cell lines tested and the myeloid cell lines U937 and KG1 were resistant (IC50 > 1000 nM). Cell growth inhibition was due to inhibition of cell cycle progression and induction of apoptosis. A statistically significant reduction in the proportion of S-phase cells (p=0.01) and increase in the percentage of apoptotic cells (p=0.019) was also observed in 18 primary AML samples in response to 100 nM PD0325901. Analysis of the correlation between sensitivity/resistance to PD0325901 and Ras/Raf mutation status is currently ongoing. PD0325901 effects were also examined in a panel of IL-3-dependent murine myeloid FDC-P1 cell lines transformed to grow in response to 11 different oncogenes in the absence of IL-3. Fms-, Ras-, Raf-1-, B-Raf-, MEK1-, IGF-1R-, and STAT5a-transformed FDC-P1 cells were very sensitive to PD0325901 (IC50: ~ 1 nM), while A-Raf-, BCR-ABL-, EGFR- or Src-transformed cells were 10 to 100 fold less sensitive (IC50: 10 to 100 nM); the parental, IL-3 dependent FDC-P1 cell line had an IC50 > 1000 nM. Analysis of the phosphorylation levels of 18 different target proteins after treatment with 10 nM PD0325901 showed a 5- to 8-fold reduction in ERK-1/2, observed only in sensitive cell lines, and a 2-fold reduction in JNK and STAT3 phosphorylation. PD0325901 (10 nM) treatment also profoundly altered the gene expression profile of the sensitive cell line OCI-AML3: 96 genes were modulated after 24 h (37 up- and 59 down-regulated), most of which involved in cell cycle regulation. Changes in cyclin D1 and D3, cyclin E, and cdc 25A were also validated at the protein level. Overall, PD0325901 shows potent growth-inhibitory and pro-apoptotic activity, indicating that MEK may be an appropriate therapeutic target in an array of different hematological malignancies. Further preclinical/clinical development of this compound is warranted, particularly in myeloid leukemias.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2734-2734
Author(s):  
Kejie Zhang ◽  
Lan V Pham ◽  
Liang Zhang ◽  
Archito T. Tamayo ◽  
Zhishuo Ou ◽  
...  

Abstract Abstract 2734 Chromosomal Region Maintenance 1 (CRM1) overexpression has been associated with cancer progression and mortality in several human cancers, suggesting that activation of nuclear export may play a role in human neoplasia and may serve as a novel target for the treatment of cancers. This overexpression of CRM1 may be related to the export of most tumor suppressor and growth regulatory proteins out of the nucleus, thereby functionally inactivating them. Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma that is not yet curable. The objective of our study was to investigate the status of CRM1 in MCL, both in MCL cell lines and primary MCL cells, in comparison to normal B cells, and to evaluate the therapeutic efficiency of CRM1 inhibition in MCL in vitro and in vivo, and to elucidate the mechanism of CRM1 inhibitor-mediated MCL cell apoptosis. We used 8 established MCL cell lines and primary cells from 4 patients with relapsed/refractory MCL. KPT185 and KPT276 are novel, highly selective, drug-like small molecular CRM1 inhibitors. Western Blot analysis showed that CRM1 was expressed in both the cytoplasm and nuclei of 8 MCL cell lines. CRM1 was mainly detected in nuclei of normal resting B cells; In contrast, CRM1 was primarily detected in the cytoplasm of freshly isolated primary MCL cells from patients with relapsed/refractory MCL. In 3H-thymidine incorporation assays, inhibition of CRM1 by KPT185 resulted in a significant dose-dependent growth inhibition of 8 MCL cells, with IC50 values range between 10 nM to 120 nM. The blastoid-variant MCL cell lines (Z-138 and Rec-1) were significantly more sensitive to KPT185 than the non-blastoid variant MCL cell lines. Flow cytometry analysis with fluorescence-labeled Annexin V and propidium iodide showed that KPT185 induced MCL cells apoptosis in both time- and dose-dependent manners, but had no effect on cell cycle arrest. MCL cells treated with KPT185 for 12 hours showed caspase 3 activation and PARP cleavage. As shown in Western blot and confocal microscopy, blocking CRM1 activity by KPT185 in MCL cells up-regulated the protein expression of p53, a known CRM1-mediated export protein, and also induced CRM1 translocation to the nucleus and decreased CRM1 expression. In severe combined immunodeficient (SCID) mice bearing palpable Z-138 tumors, treatment with KPT-276 (similar structure to KPT-185 but improved animal pharmacokinetics), 50mg/kg or 150 mg/kg PO QDx5 each week, or cyclophosphamide 100 mg/kg on days 1–3, was initiated. Tumor growth was significantly inhibited (>75%) in all of treatment groups compared with vehicle control. Neutropenia and other cytotoxic-agent specific effects have not been observed in treated animals. In conclusion, CRM1 inhibitors inhibited growth of MCL cells in vitro and in vivo, and induced apoptosis of MCL cells via inhibition of CRM1 expression and blockage of its translocation with functional nuclear proteins. Our data suggest that novel CRM1 inhibitors provide a potential therapy for patients with relapsed/refractory MCL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1496-1496 ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Enrico Derenzini ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 1496 Introduction: Although progress in the treatment of ALL has been remarkable in children, in adults ALL still carries a dismal outcome. Thus, there is a need to improve therapeutic options. In the last years, selective inhibitors of Chk1 and/or Chk2 have been discovered, developed and entered in clinical trials. However, so far, they have not yet been investigated in leukemia. Chk1 and Chk2 are serine/threonine kinases that play a critical role in response to DNA damage both by halting the cell cycle through checkpoint activation and by actively repairing DNA. Here, we explored the in vitro and in vivo activity of single-agent inhibition of Chk1/2 by PF-0477736 in B- and T-progenitor ALL and we investigated potential biomarkers of functional inhibition. Methods: Human B (BCR-ABL1-positive: BV-173, SUPB-15; BCR-ABL1- negative: NALM-6, NALM-19, REH) and T (MOLT-4, RPMI-8402, CEM) leukemia cell lines were incubated with increasing concentrations of drug (5–2000 nM) for 24, 48 and 72 hours (hrs). Results: Inhibition of Chk1/2 resulted in a dose and time-dependent cytotoxicity with RPMI-8402 and BV-173 cells being the most sensitive (IC50 at 24 hrs: 57 nM and 82 nM, respectively), while NALM-6 cells the most resistant (IC50 at 24 hrs: 1426 nM)(WST-1 assay, Roche). Sensitivity did not correlate with p53 status (BV-173, SUPB-15, NALM-6 and NALM-19 cells were p53 wild-type whereas REH, MOLT-4, RPMI-8402 and CEM cells were p53 mutated) and with baseline levels of Chk1/2 and ATR/ATM phosphorylation, indicative of intrinsic genetic stress. Consistent with the viability results, Annexin V/Propidium Iodide (PI) staining analysis showed a significant increase of apoptosis at 24 and 48 hrs in a dose and time dependent manner coupled to increased proteolytic cleavage of PARP-1. In all sensitive cell lines in addition to the induction of apoptosis, Chk1/Chk2 inhibition induced DNA damage as demonstrated by the increased number of γH2AX foci (western blot and immunofluorescence analysis) and by a marked phosphorylation of Chk1 (ser317 and ser345). Moreover, PF-0477736 efficiently triggered the Chk1-Cdc25-Cdk1 pathway as soon as 24 hrs of treatment with a decrease of the inhibitory phosphorylation of Cdc25c (ser216) and Cdk1 (tyr15), leading to the abrogation of cell cycle arrest as confirmed by PI staining analysis at 6 and 24 hrs. The efficacy of PF-0477736 was thereafter demonstrated in primary leukemic blasts separated from 14 ALL patients. Based on the viability results at 24 hrs, 3 groups of patients were identified: very good responders, 5/14, 36% (IC50: 100–500 nM); good responders, 6/14, 43% (IC50: 600–1000 nM); poor responders, 3/14, 21% (IC50 > 1000 nM). By contrast, PF-0477736 did not show efficacy in primary cultures of normal bone marrow mononuclear cells, demonstrating its specificity for leukemia cells. We extended the in vitro and ex-vivo studies by assessing the efficacy of Chk inhibition in mice transplanted with T-lymphoid leukemia, demonstrating that PF-0477736 increases the survival of treated mice compared with mice treated with vehicle (p = 0.0016). Finally, in order to elucidate the mechanisms of action of PF-0477736 and to determine biomarkers of response, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was performed on treated leukemia cells and their untreated counterparts (DMSO 0.1%) after 24 hrs of incubation with concentrations equal to the IC50. Treatment resulted in a differential expression (p < 0.05) of genes involved in chromatin assembly, nucleosome organization and DNA packaging (e.g. Histone H1-H2A, 2B family clusters), DNA damage (DDIT3, GADD34 and GADD45a) and apoptosis (e.g. CDKN1A, BAX, FAS, BTG1), confirming that PF-0477736 contributes to checkpoint replication abrogation, accumulation of DNA damage and subsequent apoptosis in leukemia cells. Interestingly, N-Myc and c-Myc expression strongly decreased after treatment, as also confirmed by western blot analysis, suggesting that a negative feedback loop may exist between Chk induction and Myc expression. Conclusions: Together, these results demonstrate the efficacy of PF-0477736 both in vitro and in vivo models of ALL, arguing in favor of its future clinical evaluation in leukemia. Supported by ELN, AIL, AIRC, Fondazione Del Monte di Bologna-Ravenna, PRIN2009, PIO program, Programma Ricerca Regione-Università 2007–2009. PF-0477736 provided by Pfizer. Disclosures: Baccarani: ARIAD, Novartis, Bristol Myers-Squibb, and Pfizer: Consultancy, Honoraria, Speakers Bureau. Martinelli:NOVARTIS: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; PFIZER: Consultancy; ARIAD: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document