scholarly journals Predicting Tumor Budding Status in Cervical Cancer Using MRI Radiomics: Linking Imaging Biomarkers to Histologic Characteristics

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5140
Author(s):  
Gun Oh Chong ◽  
Shin-Hyung Park ◽  
Nora Jee-Young Park ◽  
Bong Kyung Bae ◽  
Yoon Hee Lee ◽  
...  

Background: Our previous study demonstrated that tumor budding (TB) status was associated with inferior overall survival in cervical cancer. The purpose of this study is to evaluate whether radiomic features can predict TB status in cervical cancer patients. Methods: Seventy-four patients with cervical cancer who underwent preoperative MRI and radical hysterectomy from 2011 to 2015 at our institution were enrolled. The patients were randomly allocated to the training dataset (n = 48) and test dataset (n = 26). Tumors were segmented on axial gadolinium-enhanced T1- and T2-weighted images. A total of 2074 radiomic features were extracted. Four machine learning classifiers, including logistic regression (LR), random forest (RF), support vector machine (SVM), and neural network (NN), were used. The trained models were validated on the test dataset. Results: Twenty radiomic features were selected; all were features from filtered-images and 85% were texture-related features. The area under the curve values and accuracy of the models by LR, RF, SVM and NN were 0.742 and 0.769, 0.782 and 0.731, 0.849 and 0.885, and 0.891 and 0.731, respectively, in the test dataset. Conclusion: MRI-based radiomic features could predict TB status in patients with cervical cancer.

2021 ◽  
Vol 15 (58) ◽  
pp. 308-318
Author(s):  
Tran-Hieu Nguyen ◽  
Anh-Tuan Vu

In this paper, a machine learning-based framework is developed to quickly evaluate the structural safety of trusses. Three numerical examples of a 10-bar truss, a 25-bar truss, and a 47-bar truss are used to illustrate the proposed framework. Firstly, several truss cases with different cross-sectional areas are generated by employing the Latin Hypercube Sampling method. Stresses inside truss members as well as displacements of nodes are determined through finite element analyses and obtained values are compared with design constraints. According to the constraint verification, the safety state is assigned as safe or unsafe. Members’ sectional areas and the safety state are stored as the inputs and outputs of the training dataset, respectively. Three popular machine learning classifiers including Support Vector Machine, Deep Neural Network, and Adaptive Boosting are used for evaluating the safety of structures. The comparison is conducted based on two metrics: the accuracy and the area under the ROC curve. For the two first examples, three classifiers get more than 90% of accuracy. For the 47-bar truss, the accuracies of the Support Vector Machine model and the Deep Neural Network model are lower than 70% but the Adaptive Boosting model still retains the high accuracy of approximately 98%. In terms of the area under the ROC curve, the comparative results are similar. Overall, the Adaptive Boosting model outperforms the remaining models. In addition, an investigation is carried out to show the influence of the parameters on the performance of the Adaptive Boosting model.


10.2196/14993 ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. e14993
Author(s):  
Hani Nabeel Mufti ◽  
Gregory Marshal Hirsch ◽  
Samina Raza Abidi ◽  
Syed Sibte Raza Abidi

Background Delirium is a temporary mental disorder that occasionally affects patients undergoing surgery, especially cardiac surgery. It is strongly associated with major adverse events, which in turn leads to increased cost and poor outcomes (eg, need for nursing home due to cognitive impairment, stroke, and death). The ability to foresee patients at risk of delirium will guide the timely initiation of multimodal preventive interventions, which will aid in reducing the burden and negative consequences associated with delirium. Several studies have focused on the prediction of delirium. However, the number of studies in cardiac surgical patients that have used machine learning methods is very limited. Objective This study aimed to explore the application of several machine learning predictive models that can pre-emptively predict delirium in patients undergoing cardiac surgery and compare their performance. Methods We investigated a number of machine learning methods to develop models that can predict delirium after cardiac surgery. A clinical dataset comprising over 5000 actual patients who underwent cardiac surgery in a single center was used to develop the models using logistic regression, artificial neural networks (ANN), support vector machines (SVM), Bayesian belief networks (BBN), naïve Bayesian, random forest, and decision trees. Results Only 507 out of 5584 patients (11.4%) developed delirium. We addressed the underlying class imbalance, using random undersampling, in the training dataset. The final prediction performance was validated on a separate test dataset. Owing to the target class imbalance, several measures were used to evaluate algorithm’s performance for the delirium class on the test dataset. Out of the selected algorithms, the SVM algorithm had the best F1 score for positive cases, kappa, and positive predictive value (40.2%, 29.3%, and 29.7%, respectively) with a P=.01, .03, .02, respectively. The ANN had the best receiver-operator area-under the curve (78.2%; P=.03). The BBN had the best precision-recall area-under the curve for detecting positive cases (30.4%; P=.03). Conclusions Although delirium is inherently complex, preventive measures to mitigate its negative effect can be applied proactively if patients at risk are prospectively identified. Our results highlight 2 important points: (1) addressing class imbalance on the training dataset will augment machine learning model’s performance in identifying patients likely to develop postoperative delirium, and (2) as the prediction of postoperative delirium is difficult because it is multifactorial and has complex pathophysiology, applying machine learning methods (complex or simple) may improve the prediction by revealing hidden patterns, which will lead to cost reduction by prevention of complications and will optimize patients’ outcomes.


2019 ◽  
Author(s):  
Hani Nabeel Mufti ◽  
Gregory Marshal Hirsch ◽  
Samina Raza Abidi ◽  
Syed Sibte Raza Abidi

BACKGROUND Delirium is a temporary mental disorder that occasionally affects patients undergoing surgery, especially cardiac surgery. It is strongly associated with major adverse events, which in turn leads to increased cost and poor outcomes (eg, need for nursing home due to cognitive impairment, stroke, and death). The ability to foresee patients at risk of delirium will guide the timely initiation of multimodal preventive interventions, which will aid in reducing the burden and negative consequences associated with delirium. Several studies have focused on the prediction of delirium. However, the number of studies in cardiac surgical patients that have used machine learning methods is very limited. OBJECTIVE This study aimed to explore the application of several machine learning predictive models that can pre-emptively predict delirium in patients undergoing cardiac surgery and compare their performance. METHODS We investigated a number of machine learning methods to develop models that can predict delirium after cardiac surgery. A clinical dataset comprising over 5000 actual patients who underwent cardiac surgery in a single center was used to develop the models using logistic regression, artificial neural networks (ANN), support vector machines (SVM), Bayesian belief networks (BBN), naïve Bayesian, random forest, and decision trees. RESULTS Only 507 out of 5584 patients (11.4%) developed delirium. We addressed the underlying class imbalance, using random undersampling, in the training dataset. The final prediction performance was validated on a separate test dataset. Owing to the target class imbalance, several measures were used to evaluate algorithm’s performance for the delirium class on the test dataset. Out of the selected algorithms, the SVM algorithm had the best F1 score for positive cases, kappa, and positive predictive value (40.2%, 29.3%, and 29.7%, respectively) with a <italic>P</italic>=.01, .03, .02, respectively. The ANN had the best receiver-operator area-under the curve (78.2%; <italic>P</italic>=.03). The BBN had the best precision-recall area-under the curve for detecting positive cases (30.4%; <italic>P</italic>=.03). CONCLUSIONS Although delirium is inherently complex, preventive measures to mitigate its negative effect can be applied proactively if patients at risk are prospectively identified. Our results highlight 2 important points: (1) addressing class imbalance on the training dataset will augment machine learning model’s performance in identifying patients likely to develop postoperative delirium, and (2) as the prediction of postoperative delirium is difficult because it is multifactorial and has complex pathophysiology, applying machine learning methods (complex or simple) may improve the prediction by revealing hidden patterns, which will lead to cost reduction by prevention of complications and will optimize patients’ outcomes.


2019 ◽  
Vol 143 (8) ◽  
pp. 990-998 ◽  
Author(s):  
Min Yu ◽  
Lindsay A. L. Bazydlo ◽  
David E. Bruns ◽  
James H. Harrison

Context.— Turnaround time and productivity of clinical mass spectrometric (MS) testing are hampered by time-consuming manual review of the analytical quality of MS data before release of patient results. Objective.— To determine whether a classification model created by using standard machine learning algorithms can verify analytically acceptable MS results and thereby reduce manual review requirements. Design.— We obtained retrospective data from gas chromatography–MS analyses of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in 1267 urine samples. The data for each sample had been labeled previously as either analytically unacceptable or acceptable by manual review. The dataset was randomly split into training and test sets (848 and 419 samples, respectively), maintaining equal proportions of acceptable (90%) and unacceptable (10%) results in each set. We used stratified 10-fold cross-validation in assessing the abilities of 6 supervised machine learning algorithms to distinguish unacceptable from acceptable assay results in the training dataset. The classifier with the highest recall was used to build a final model, and its performance was evaluated against the test dataset. Results.— In comparison testing of the 6 classifiers, a model based on the Support Vector Machines algorithm yielded the highest recall and acceptable precision. After optimization, this model correctly identified all unacceptable results in the test dataset (100% recall) with a precision of 81%. Conclusions.— Automated data review identified all analytically unacceptable assays in the test dataset, while reducing the manual review requirement by about 87%. This automation strategy can focus manual review only on assays likely to be problematic, allowing improved throughput and turnaround time without reducing quality.


Author(s):  
Abhinav N Patil

Image recognition is important side of image processing for machine learning without involving any human support at any step. In this paper we study how image classification is completed using imagery backend. Couple of thousands of images of every, cats and dogs are taken then distributed them into category of test dataset and training dataset for our learning model. The results are obtained using custom neural network with the architecture of Convolution Neural Networks and Keras API.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhiyuan Liu ◽  
Zekun Jiang ◽  
Li Meng ◽  
Jun Yang ◽  
Ying Liu ◽  
...  

Objective. The purpose of this study was to investigate the feasibility of applying handcrafted radiomics (HCR) and deep learning-based radiomics (DLR) for the accurate preoperative classification of glioblastoma (GBM) and solitary brain metastasis (BM). Methods. A retrospective analysis of the magnetic resonance imaging (MRI) data of 140 patients (110 in the training dataset and 30 in the test dataset) with GBM and 128 patients (98 in the training dataset and 30 in the test dataset) with BM confirmed by surgical pathology was performed. The regions of interest (ROIs) on T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1WI (T1CE) were drawn manually, and then, HCR and DLR analyses were performed. On this basis, different machine learning algorithms were implemented and compared to find the optimal modeling method. The final classifiers were identified and validated for different MRI modalities using HCR features and HCR + DLR features. By analyzing the receiver operating characteristic (ROC) curve, the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the predictive efficacy of different methods. Results. In multiclassifier modeling, random forest modeling showed the best distinguishing performance among all MRI modalities. HCR models already showed good results for distinguishing between the two types of brain tumors in the test dataset (T1WI, AUC = 0.86; T2WI, AUC = 0.76; T1CE, AUC = 0.93). By adding DLR features, all AUCs showed significant improvement (T1WI, AUC = 0.87; T2WI, AUC = 0.80; T1CE, AUC = 0.97; p < 0.05 ). The T1CE-based radiomic model showed the best classification performance (AUC = 0.99 in the training dataset and AUC = 0.97 in the test dataset), surpassing the other MRI modalities ( p < 0.05 ). The multimodality radiomic model also showed robust performance (AUC = 1 in the training dataset and AUC = 0.84 in the test dataset). Conclusion. Machine learning models using MRI radiomic features can help distinguish GBM from BM effectively, especially the combination of HCR and DLR features.


10.2196/16466 ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. e16466 ◽  
Author(s):  
Myeong Gyu Kim ◽  
Jungu Kim ◽  
Su Cheol Kim ◽  
Jaegwon Jeong

Background Methylphenidate, a stimulant used to treat attention deficit hyperactivity disorder, has the potential to be used nonmedically, such as for studying and recreation. In an era when many people actively use social networking services, experience with the nonmedical use or side effects of methylphenidate might be shared on Twitter. Objective The purpose of this study was to analyze tweets about the nonmedical use and side effects of methylphenidate using a machine learning approach. Methods A total of 34,293 tweets mentioning methylphenidate from August 2018 to July 2019 were collected using searches for “methylphenidate” and its brand names. Tweets in a randomly selected training dataset (6860/34,293, 20.00%) were annotated as positive or negative for two dependent variables: nonmedical use and side effects. Features such as personal noun, nonmedical use terms, medical use terms, side effect terms, sentiment scores, and the presence of a URL were generated for supervised learning. Using the labeled training dataset and features, support vector machine (SVM) classifiers were built and the performance was evaluated using F1 scores. The classifiers were applied to the test dataset to determine the number of tweets about nonmedical use and side effects. Results Of the 6860 tweets in the training dataset, 5.19% (356/6860) and 5.52% (379/6860) were about nonmedical use and side effects, respectively. Performance of SVM classifiers for nonmedical use and side effects, expressed as F1 scores, were 0.547 (precision: 0.926, recall: 0.388, and accuracy: 0.967) and 0.733 (precision: 0.920, recall: 0.609, and accuracy: 0.976), respectively. In the test dataset, the SVM classifiers identified 361 tweets (1.32%) about nonmedical use and 519 tweets (1.89%) about side effects. The proportion of tweets about nonmedical use was highest in May 2019 (46/2624, 1.75%) and December 2018 (36/2041, 1.76%). Conclusions The SVM classifiers that were built in this study were highly precise and accurate and will help to automatically identify the nonmedical use and side effects of methylphenidate using Twitter.


Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2021 ◽  
pp. 159101992110009
Author(s):  
Xinke Liu ◽  
Junqiang Feng ◽  
Zhenzhou Wu ◽  
Zhonghao Neo ◽  
Chengcheng Zhu ◽  
...  

Objective Accurate diagnosis and measurement of intracranial aneurysms are challenging. This study aimed to develop a 3D convolutional neural network (CNN) model to detect and segment intracranial aneurysms (IA) on 3D rotational DSA (3D-RA) images. Methods 3D-RA images were collected and annotated by 5 neuroradiologists. The annotated images were then divided into three datasets: training, validation, and test. A 3D Dense-UNet-like CNN (3D-Dense-UNet) segmentation algorithm was constructed and trained using the training dataset. Diagnostic performance to detect aneurysms and segmentation accuracy was assessed for the final model on the test dataset using the free-response receiver operating characteristic (FROC). Finally, the CNN-inferred maximum diameter was compared against expert measurements by Pearson’s correlation and Bland-Altman limits of agreement (LOA). Results A total of 451 patients with 3D-RA images were split into n = 347/41/63 training/validation/test datasets, respectively. For aneurysm detection, observed FROC analysis showed that the model managed to attain a sensitivity of 0.710 at 0.159 false positives (FP)/case, and 0.986 at 1.49 FP/case. The proposed method had good agreement with reference manual aneurysmal maximum diameter measurements (8.3 ± 4.3 mm vs. 7.8 ± 4.8 mm), with a correlation coefficient r = 0.77, small bias of 0.24 mm, and LOA of -6.2 to 5.71 mm. 37.0% and 77% of diameter measurements were within ±1 mm and ±2.5 mm of expert measurements. Conclusions A 3D-Dense-UNet model can detect and segment aneurysms with relatively high accuracy using 3D-RA images. The automatically measured maximum diameter has potential clinical application value.


Sign in / Sign up

Export Citation Format

Share Document