scholarly journals Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5998
Author(s):  
Niamh A. Leonard ◽  
Eileen Reidy ◽  
Kerry Thompson ◽  
Emma McDermott ◽  
Eleonora Peerani ◽  
...  

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. CRC develops in a complex tumour microenvironment (TME) with both mesenchymal stromal cells (MSCs) and immune infiltrate, shown to alter disease progression and treatment response. We hypothesised that an accessible, affordable model of CRC that combines multiple cell types will improve research translation to the clinic and enable the identification of novel therapeutic targets. A viable gelatine-methacrloyl-based hydrogel culture system that incorporates CRC cells with MSCs and a monocyte cell line was developed. Gels were analysed on day 10 by PCR, cytokine array, microscopy and flow cytometry. The addition of stromal cells increased transcription of matrix remodelling proteins FN1 and MMP9, induced release of tumour-promoting immune molecules MIF, Serpin E1, CXCL1, IL-8 and CXCL12 and altered cancer cell expression of immunotherapeutic targets EGFR, CD47 and PD-L1. Treatment with PD153035, an EGFR inhibitor, revealed altered CRC expression of PD-L1 but only in gels lacking MSCs. We established a viable 3D model of CRC that combined cancer cells, MSCs and monocytic cells that can be used to research the role the stroma plays in the TME, identify novel therapeutic targets and improve the transitional efficacy of therapies.

2017 ◽  
Vol 39 (3) ◽  
pp. 186-190 ◽  
Author(s):  
O S Gubar ◽  
A I Rodnichenko ◽  
R G Vasylie ◽  
A V Zlatska ◽  
D O Zubov

Aim: We aimed to isolate and characterize the cell types which could be obtained from postnatal extra-embryonic tissues. Materials and Methods: Fresh tissues (no more than 12 h after delivery) were used for enzymatic or explants methods of cell isolation. Obtained cultures were further maintained at 5% oxygen. At P3 cell phenotype was assessed by fluorescence-activated cell sorting, population doubling time was calculated and the multilineage differentiation assay was performed. Results: We have isolated multiple cell types from postnatal tissues. Namely, placental mesenchymal stromal cells from placenta chorionic disc, chorionic membrane mesenchymal stromal cells (ChM-MSC) from free chorionic membrane, umbilical cord MSC (UC-MSC) from whole umbilical cord, human umbilical vein endothelial cells (HUVEC) from umbilical vein, amniotic epithelial cells (AEC) and amniotic MSC (AMSC) from amniotic membrane. All isolated cell types displayed high proliferation rate together with the typical MSC phenotype: CD73+CD90+CD105+CD146+CD166+CD34-CD45-HLA-DR-. HUVEC constitutively expressed key markers CD31 and CD309. Most MSC and AEC were capable of osteogenic and adipogenic differentiation. Conclusion: We have shown that a wide variety of cell types can be easily isolated from extra-embryonic tissues and expanded ex vivo for regenerative medicine applications. These cells possess typical MSC properties and can be considered an alternative for adult MSC obtained from bone marrow or fat, especially for allogeneic use.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1588 ◽  
Author(s):  
Michael D. Crowther ◽  
Inge Marie Svane ◽  
Özcan Met

T-cells have a natural ability to fight cancer cells in the tumour microenvironment. Due to thymic selection and tissue-driven immunomodulation, these cancer-fighting T-cells are generally low in number and exhausted. One way to overcome these issues is to genetically alter T-cells to improve their effectiveness. This process can involve introducing a receptor that has high affinity for a tumour antigen, with two promising candidates known as chimeric-antigen receptors (CARs), or T-cell receptors (TCRs) with high tumour specificity. This review focuses on the editing of immune cells to introduce such novel receptors to improve immune responses to cancer. These new receptors redirect T-cells innate killing abilities to the appropriate target on cancer cells. CARs are modified receptors that recognise whole proteins on the surface of cancer cells. They have been shown to be very effective in haematological malignancies but have limited documented efficacy in solid cancers. TCRs recognise internal antigens and therefore enable targeting of a much wider range of antigens. TCRs require major histocompatibility complex (MHC) restriction but novel TCRs may have broader antigen recognition. Moreover, there are multiple cell types which can be used as targets to improve the “off-the-shelf” capabilities of these genetic engineering methods.


2020 ◽  
Vol 190 (4) ◽  
Author(s):  
Avirup Chowdhury ◽  
Sandra Loaiza ◽  
Eva Yebra‐Fernandez ◽  
Elisabet Nadal‐Melsio ◽  
Jane F. Apperley ◽  
...  

1998 ◽  
Vol 6 (3-4) ◽  
pp. 157-170 ◽  
Author(s):  
Ann P. Chidgey ◽  
Hanspeter Pircher ◽  
H. Robson Macdonald ◽  
Richard L. Boyd

Presented here is a cell-suspension model for positive selection using thymocytes fromαβ-TCR (H-2Db-restricted) transgenic mice specific to the lymphocytic choriomeningitis virus (LCMV) on a nonselecting MHC background (H-2dor TAP-1 –/–), cocultured with freshly isolated adult thymus stromal cells of the selecting MHC type. The thymic stromal cells alone induced positive selection of functional CD4-CD8+cells whose kinetics and efficiency were enhanced by nominal peptide. Fibroblasts expressing the selecting MHC alone did not induce positive selection; however, together with nonselecting stroma and nominal peptide, there was inefficient positive. These results suggest multiple signaling in positive selection with selection events able to occur on multiple-cell types. The ease with which this model can be manipulated should greatly facilitate the resolution of the mechanisms of positive selection in normal and pathological states.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Virginia J. Savin ◽  
Mukut Sharma ◽  
Jianping Zhou ◽  
David Gennochi ◽  
Timothy Fields ◽  
...  

CLCF-1 is a cytokine known for B-cell stimulation and for neurotrophic properties. We have identified CLCF-1 as a potential injurious factor in the human renal disease focal segmental glomerulosclerosis (FSGS). We investigated its effects on renal cells and renal function inin vitroandin vivostudies. Methods include measurement of the effect of CLCF-1 on phosphorylation of target molecules of the JAK/STAT pathway, on cytoskeleton and cell morphology in cultured podocytes, on albumin permeability of isolated rat glomeruli, and on tissue phosphorylation and urine albumin after acute or chronic CLCF-1 injection. In addition, cell sorting was performed to determine the presence of cells expressing CLCF-1 in spleen and bone marrow of normal mice and the effect of CLCF-1 infusion on splenic B-cell populations. CLCF-1 increased phosphorylation of STAT3 in multiple cell types, activated podocytes leading to formation of lamellipodia and decrease in basal stress fibers, increased glomerular albumin permeability, and increased STAT3 phosphorylation of peripheral blood cells and renal cortex. CLCF-1 increased urine albumin/creatinine ratio in mice and increased B-cell expression of IgG in mouse spleen. We conclude that CLCF-1 has potentially important systemic effects, alters podocyte function, and may contribute to renal dysfunction and albuminuria.


2019 ◽  
Vol 8 (12) ◽  
pp. 2199 ◽  
Author(s):  
Emma L. Solly ◽  
Catherine G. Dimasi ◽  
Christina A. Bursill ◽  
Peter J. Psaltis ◽  
Joanne T. M. Tan

Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.


2020 ◽  
Author(s):  
Claire Lamaison ◽  
Simon Latour ◽  
Nelson Hélaine ◽  
Valérie Le Morvan ◽  
Céline Monvoisin ◽  
...  

ABSTRACTNon-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as densely packed aggregates of tumor cells and their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. Until now, in vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B lymphomas remain scarce while all these parameters constitute key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on the encapsulation of cells inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D-model incorporating extracellular matrix and/or stromal cells. Lymphoma B cells and stromal cells dynamically formed self-organized 3D spheroids, thus initiating a coevolution of these two cell types, reflecting their bidirectional crosstalk, and recapitulating the heterogeneity of B-NHL subtypes. In addition, this approach makes it suitable to assess in a relevant in vitro model the activity of new therapeutic agents in B-NHL.


2021 ◽  
Vol 22 (22) ◽  
pp. 12569
Author(s):  
Jana Kotulová ◽  
Marián Hajdúch ◽  
Petr Džubák

A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.


2017 ◽  
Author(s):  
Charlotte Lussey-Lepoutre ◽  
Kate E R Hollinshead ◽  
Christian Ludwig ◽  
Melanie Menara ◽  
Aurelie Morin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document