scholarly journals Bak and Bcl-xL Participate in Regulating Sensitivity of Solid Tumor Derived Cell Lines to Mcl-1 Inhibitors

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Viacheslav V. Senichkin ◽  
Nikolay V. Pervushin ◽  
Alexey V. Zamaraev ◽  
Elena V. Sazonova ◽  
Anton P. Zuev ◽  
...  

BH3 mimetics represent a promising tool in cancer treatment. Recently, the drugs targeting the Mcl-1 protein progressed into clinical trials, and numerous studies are focused on the investigation of their activity in various preclinical models. We investigated two BH3 mimetics to Mcl-1, A1210477 and S63845, and found their different efficacies in on-target doses, despite the fact that both agents interacted with the target. Thus, S63845 induced apoptosis more effectively through a Bak-dependent mechanism. There was an increase in the level of Bcl-xL protein in cells with acquired resistance to Mcl-1 inhibition. Cell lines sensitive to S63845 demonstrated low expression of Bcl-xL. Tumor tissues from patients with lung adenocarcinoma were characterized by decreased Bcl-xL and increased Bak levels of both mRNA and proteins. Concomitant inhibition of Bcl-xL and Mcl-1 demonstrated dramatic cytotoxicity in six of seven studied cell lines. We proposed that co-targeting Bcl-xL and Mcl-1 might lead to a release of Bak, which cannot be neutralized by other anti-apoptotic proteins. Surprisingly, in Bak-knockout cells, inhibition of Mcl-1 and Bcl-xL still resulted in pronounced cell death, arguing against a sole role of Bak in the studied phenomenon. We demonstrate that Bak and Bcl-xL are co-factors for, respectively, sensitivity and resistance to Mcl-1 inhibition.

2021 ◽  
Vol 65 (4) ◽  
Author(s):  
Nuobei Zhang ◽  
Hao Shen ◽  
Shenan Huang ◽  
Fenfen Wang ◽  
Huifang Liu ◽  
...  

The long non-coding FGD5-AS1 (LncFGD5-AS1) has been reported to be a novel carcinogenic gene and participant in regulating tumor progression by sponging microRNAs (miRNAs). However, the pattern of expression and the biological role of FGD5-AS1 in hepatocellular carcinoma (HCC) remains largely unknown. The expression level of FGD5-AS1 in tumor tissues and cell lines was measured by RT-qPCR. CCK-8, EdU, flow cytometry, wound healing, and transwell chamber assays were performed to investigate the role of FGD5-AS1 in cell proliferation, apoptosis, migration, and invasion in HCC. Dual luciferase reporter, and RNA pull-down assays were performed to identify the regulatory interactions among FGD5-AS1, miR-873-5p and GTP-binding protein 4 (GTPBP4). We found that the expression of FGD5-AS1 was upregulated in HCC tissues and cell lines. Moreover, the knockdown of FGD5-AS1 suppressed cell proliferation, migration and invasion, and induced apoptosis in HCC cells. Further studies demonstrated that FGD5-AS1 could function as a competitive RNA by sponging miR-873-5p in HCC cells. Moreover, GTPBP4 was identified as direct downstream target of miR-873-5p in HCC cells and FGD5-AS1mediated the effects of GTPBP4 by competitively binding with miR-873-5p. Taken together, this study demonstrated the regulatory role of FGD5-AS1 in the progression of HCC and identified the miR-873-5p/GTPBP4 axis as the direct downstream pathway. It represents a promising novel therapeutic strategy for HCC patients.


2006 ◽  
Vol 203 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ronit Vogt Sionov ◽  
Orly Cohen ◽  
Shlomit Kfir ◽  
Yael Zilberman ◽  
Eitan Yefenof

The mechanisms by which glucocorticoid receptor (GR) mediates glucocorticoid (GC)-induced apoptosis are unknown. We studied the role of mitochondrial GR in this process. Dexamethasone induces GR translocation to the mitochondria in GC-sensitive, but not in GC-resistant, T cell lines. In contrast, nuclear GR translocation occurs in all cell types. Thymic epithelial cells, which cause apoptosis of the PD1.6 T cell line in a GR-dependent manner, induce GR translocation to the mitochondria, but not to the nucleus, suggesting a role for mitochondrial GR in eliciting apoptosis. This hypothesis is corroborated by the finding that a GR variant exclusively expressed in the mitochondria elicits apoptosis of several cancer cell lines. A putative mitochondrial localization signal was defined to amino acids 558–580 of human GR, which lies within the NH2-terminal part of the ligand-binding domain. Altogether, our data show that mitochondrial and nuclear translocations of GR are differentially regulated, and that mitochondrial GR translocation correlates with susceptibility to GC-induced apoptosis.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Larissa Ewald ◽  
Jessica Dittmann ◽  
Meike Vogler ◽  
Simone Fulda

AbstractDespite advances in the treatment of acute myeloid leukemia (AML), prognosis of AML patients is still dismal and better treatment options are required. B-cell Lymphoma 2 (BCL-2) homology domain 3 (BH3)-mimetics are emerging as a novel class of apoptosis-inducing agents that are currently being tested for the treatment of different hematological malignancies including AML. Particularly, the selective BCL-2 inhibitor ABT-199/Venetoclax is demonstrating clinical responses and has recently been approved in combination for the treatment of AML. Compounds targeting the related protein MCL-1 have recently entered clinical trials, highlighting the urgency to compare the different BH3-mimetics and identify the most promising antiapoptotic target in AML. We performed a side-by-side comparison of different highly selective and potent BH3-mimetics targeting BCL-2 (ABT-199), MCL-1 (S63845) or BCL-xL (A1331852) in a panel of AML cell lines and primary patient cells. Gene knockdown using siRNAs was utilized to investigate the functional relevance of BCL-2 proteins. Western blotting and immunoprecipitations were used to explore the influence of BH3-mimetics on interactions between pro- and antiapoptotic BCL-2 proteins. A1331852 induced apoptosis only in selected cases, indicating that BCL-xL is not a very promising therapeutic target in AML. However, S63845 displayed higher potency than ABT-199, with more cell lines and primary cells responding to S63845 than to ABT-199. MCL-1 dependency in AML cells was confirmed by siRNA-mediated knockdown of MCL-1, which was sufficient to induce apoptosis. S63845-induced cell death was accompanied by a displacement of the BH3-only protein BIM as well as BAK, resulting in BAK-dependent apoptosis. In contrast, ABT-199-induced cell death was mediated by BAX rather than BAK, indicating distinct non-redundant molecular functions of BCL-2 and MCL-1 in AML. Our study reveals that MCL-1 may be a more prevalent therapeutic target than BCL-2 in AML and identifies BIM and BAK as important mediators of S63845-induced apoptosis in AML.


2016 ◽  
Vol 9 (6) ◽  
pp. 540-547 ◽  
Author(s):  
Christine M. Heske ◽  
Choh Yeung ◽  
Arnulfo Mendoza ◽  
Joshua T. Baumgart ◽  
Leah D. Edessa ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 631-631
Author(s):  
Steven Le Gouill ◽  
Klaus Podar ◽  
Martine Amiot ◽  
Teru Hideshima ◽  
Dharminder Chauhan ◽  
...  

Abstract Vascular endothelial growth factor (VEGF) induces proliferation of MM cells and induces interleukin-6 (IL-6) secretion in a paracrine loop involving MM cells and bone marrow stromal cells. In turn, IL-6 triggers multiple myeloma (MM) cell proliferation and also protects against apoptosis by upregulating Myeloid-cell-leukemia 1 (Mcl-1), a critical survival protein in MM cells. The goal of our study was to investigate the role of Mcl-1 in VEGF induced-proliferation and protection against apoptosis. Using two murine embryonic fibroblast cell lines as a model (a Mcl-1 deleted cell line and its wild type: Mcl-1Δ/null and Mcl-1wt/wt MEFs, respectively), we here demonstrate that deletion of Mcl-1 reduces fetal bovine serum (FBS), VEGF, and IL-6 induced-proliferation. In addition, we demonstrate that the percentage of cells in S phase is lower in Mcl-1Δ/null compared to Mcl-1wt/wt MEFs (21% (+/−1) versus 30% (+/− 3), respectively). Taken together, these results demonstrate that Mcl-1 is required to mediate VEGF, Il-6 and FBS-induced-proliferation and cell cycle progression. To highlight the key anti-apoptotic role of Mcl-1 in MM cells, humans MM1s cells were transfected with Mcl-1 siRNA. Specific inhibition of Mcl-1 was associated with decreased proliferation (42% and 61% decreases at 24 and 48 h, respectively) and induction of apoptosis (subG1 peak: 22% and 41% in Mcl-1 siRNA transfected cells versus 15% and 15 % in non-transfected cells at 24 and 48 h, respectively), confirming that Mcl-1 is critical for both proliferation and protection against apoptosis in MM cells. In 3 human MM cell lines (MM1s, U266 and MM1R) and MM patient cells we next showed that Mcl-1 protein expression, but not other bcl-2 family members, is upregulated by VEGF in a time and dose manner; and conversely that the pan-VEGF inhibitor GW654652, blocks VEGF induced-upregulation of Mcl-1. Furthermore using flow cytometry with a double staining (CD38-FITC and Apo 2.7-PE), we demonstrate that VEGF protects MM patient cells from FBS-starvation-induced-apoptosis: the percentage of apoptotic MM patient cells (CD38++ and Apo 2.7+) in non starved medium (RPMI 1640 supplemented with 10% FBS) was 15% versus 93% in starved medium (RPMI 1640 supplemented with FBS 2%), and 48% in starved medium supplemented with 25ng/ml VEGF. In conclusion, our study demonstrates that VEGF protects MM cells against apoptosis, and that VEGF-induced MM cell proliferation and survival is mediated via Mcl-1. these studies provide the preclinical framework for novel therapeutics targeting both Mcl-1 and/or VEGF to improve patient outcome in MM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1517-1517
Author(s):  
Mario I. Vega ◽  
Ali R. Jazirehi ◽  
Sara Huerta-Yepez ◽  
Benjamin Bonavida

Abstract We have recently reported that treatment of B-NHL cell lines with rituximab sensitizes the tumor cells to both chemotherapy and Fas-induced apoptosis (Jazirehi and Bonavida, 2005, Oncogene, 24:2121–2145). This study investigated the underlying molecular mechanism of rituximab-mediated reversal of resistance. Treatment of B-NHL cell lines inhibited the constitutively activated NF- κB. Cells expressing dominant active IκB or treated with NF-κB specific inhibitors were sensitized to both drugs and FasL agonist mAb (CH-11)-induced apoptosis. Downregulation of Bcl-xL expression via inhibition of NF-κB activity correlated with chemosensitivity. The direct role of Bcl-xL in chemoresistance was demonstrated by the use of Bcl-xL overexpressing Ramos cells, Ramos HA-BclxL (gift from Genhong Cheng, UCLA), which were not sensitized by rituximab to drug-induced apoptosis. However, inhibition of Bcl-xL in Ramos HA-Bcl-x resulted in sensitization to drug-induced apoptosis. The role of Bcl-xL expression in the regulation of Fas resistance was not apparent as Ramos HA-Bcl cells were as sensitive as the wild type cells to CH-11-induced apoptosis. Several lines of evidence support the direct role of the transcription repressor Yin-Yang 1 (YY1) in the regulation of resistance to CH-11-induced apoptosis. Inhibition of YY1 activity by either rituximab, the NO donor DETANONOate, or following transfection with YY1 siRNA all resulted in upregulation of Fas expression and sensitization to CH-11-induced apoptosis. These findings suggest two complementary mechanisms underlying the chemo-sensitization and immuno-sensitization of B NHL cells by rituximab via inhibition of NF-κB. The regulation of chemoresistance by NF-κB is mediated via Bcl-xL expression whereas the regulation of Fas resistance by NF-κB is mediated via YY1 expression and activity. These findings suggest that drug-resistant NHL tumor cells may be sensitive to immune-mediated therapeutics.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4763-4763
Author(s):  
Xin-Yan Pei ◽  
Michael W Sanderson ◽  
Leena E Youssefian ◽  
Jessica Felthousen ◽  
Lora B Kramer ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is characterized by deregulation of members of the Bcl-2 family of apoptotic regulatory proteins. This has led to the development of BH3-mimetics such as ABT-737 which inhibits Bcl-2/xL but not Mcl-1. Previously, we reported that simultaneous inhibition of Chk1 and MEK1/2 dramatically induced apoptosis in cultured and primary MM cells, including cells resistant to conventional agents, while sparing their normal counterparts (Pei et al., Blood 2007, 2011). Recently, we reported that this strategy circumvented MM cell resistance conferred by overexpression of Mcl-1, an important survival factor in this disease (Pei et al., PLoS One 2014). However, Bcl-2 overexpression confers significant resistance to the Chk1/MEK1/2 inhibition strategy. This raised the possibility that BH3-mimetics targeting Bcl-2 might circumvent this resistance mechanism. The purpose of the present studies was to determine whether BH3-mimetics could overcome such resistance while preserving anti-myeloma selectivity. An additional goal was to employ a new mathematical model to characterize interactions combining three novel agents that coordinately inhibit multiple survival signaling pathways. Methods: Various parental and Bcl-2 or Bcl-xL-over-expressing MM cell lines, as well as primary CD138+ MM cells were employed. ABT-737, the MEK1/2 inhibitor PD184352 (PD), and the Chk1/Wee1 inhibitor (Chk1i) were obtained from Abbott, Millipore and Calbiochem, respectively. Cells were exposed to agents alone or in various combinations for 4 -72 h, after which effects on apoptosis and signaling pathways were determined. Results: Co-administration of ABT-737 potentiated PD/Chk1i-mediated lethality in multiple parental MM cell lines, in association with Mcl-1 down-regulation, Bim up-regulation, and increased DNA damage (ΥH2A.X). Consistent with earlier findings, ectopic expression of Bcl-2 or Bcl-xL protected MM cells from the PD/Chk1i regimen. However, co-administration of ABT-737 significantly restored sensitivity towards PD/Chk1i lethality. Mathematical modeling indicated 3-agent synergistic interactions, particularly in Bcl-2 overexpressing cells. PD/Chk1i exposure inhibited phosphorylation (T705 and S727) of Stat3, another important survival factor for MM cells, while cells expressing constitutively active Stat3 (CA-STAT3) exhibited resistance to this regimen. However, the latter event was reversed by co-exposure to ABT-737. Moreover, combining ABT-737 with PD/Chk1i resulted in release of Bim from anti-apoptotic proteins including Bcl-2, Bcl-xL, and Mcl-1, accompanied by Bak and Bax conformational change (activation). Knock-down of Bim by shRNA significantly protected cells from apoptosis induced by the 3-agent combination, indicating a functional role for Bim in anti-MM activity of this regimen. Furthermore, similar interactions, together with down-regulation of pStat3, were also observed in bortezomib-resistant MM cells, as well as in patient-derived CD138+ MM cells. In contrast, the regimen was minimally toxic to normal cord blood CD34+ cells or CD138- bone marrow cells. Finally, co-culture of parental or bortezomib-resistant MM cells with HS-5 stromal cells induced up-regulation of pStat3, while treatment with ABT-737 in combination with PD/Chk1i prevented Stat3 activation and robustly induced apoptosis despite the presence of stromal cells. Conclusion: ABT-737 co-administration synergistically potentiates the lethality of the PD/Chk1i regimen in MM cells, including bortezomib-resistant and primary MM cells, but not in normal hematopoietic progenitors. It also overcomes PD/Chk1i resistance conferred by overexpression of Bcl-2 or Bcl-xL, as well as by microenvironmental factors. Mechanisms responsible for these interactions are likely to be multi-factorial, including inactivation of Stat3, up-regulation of Bim, release of Bim from Bcl-2, Bcl-xL, and Mcl-1, and activation of Bak and Bax. Collectively, these findings demonstrate that combining BH3-mimetics with Chk1/MEK1/2 inhibition circumvents multiple forms of drug resistance in MM cells while exhibiting minimal toxicit toward normal hematopoietic cells. They also argue that a strategy targeting three coordinate survival signaling pathways may be highly effective in killing MM cells, particularly those resistant to current anti-MM therapies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 891-891
Author(s):  
Katia Beider ◽  
Valeria Voevoda ◽  
Hanna Bitner ◽  
Evgenia Rosenberg ◽  
Hila Magen ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a neoplastic disorder that is characterized by clonal proliferation of plasma cells in the bone marrow (BM). Despite the initial efficacious treatment, MM patients often become refractory to common anti-MM drugs, therefore novel therapies are in need. Pan-histone deacetylase (HDAC) inhibitor panobinostat exerts multiple cytotoxic actions in MM cells in vitro, and was approved for the treatment of relapsed/refractory MM in combination with bortezomib and dexamethasone. Although having promising anti-MM properties, panobinostat lacks therapeutic activity as monotherapy. The aim of the current study was to elucidate the mechanisms underlying MM resistance to panobinostat and to define strategies to overcome it. Results: Panobinostat at the low concentrations (IC50 5-30 nM) suppressed the viability in MM cell lines (n=7) and primary CD138+ cells from MM patients (n=8) in vitro. Sensitivity to panobinostat correlated with reduced expression of chemokine receptor CXCR4, while overexpression of CXCR4 or its ligand CXCL12 in RPMI8226 and CAG MM cell lines significantly (p<0.001) increased their resistance to panobinostat, pointing to the role of the CXCR4 axis in HDACi response. Notably, similar expression levels of class I HDACs (HDAC1-3) were detected in MM cells with either low or high CXCR4. Interaction with BM stromal cells that represent the source of CXCL12 also protected MM cells from panobinostat-induced apoptosis, further strengthening a role for CXCR4 downstream pathway. Decreased sensitivity to cytotoxic effect was concomitant with reduced histone (H3K9 and H4K8) acetylation in response to panobinostat treatment. In addition, resistance to HDACi was associated with the reversible G0/G1 cell growth arrest, whereas sensitivity was characterized by apoptotic cell death. Analysis of intra-cellular signaling mediators involved in CXCR4-mediated HDACi resistance revealed the pro-survival AKT/mTOR pathway to be regulated by both CXCR4 over-expression and interaction with BMSCs. Combining panobinostat with mTOR inhibitor everolimus abrogated the resistance and induced synergistic cell death of MM cell lines and primary MM cells, but not of normal mononuclear cells (CI<0.4). This effect was concurrent with the increase in DNA double strand breaks, histone H2AX phosphorylation, loss of Dψm, cytochrome c release, caspase 3 activation and PARP cleavage. The increase in DNA damage upon combinational treatment was not secondary to the apoptotic DNA fragmentation, as it occurred similarly when apoptosis onset was blocked by caspase inhibitor z-VAD-fmk. Kinetics studies also confirmed that panobinostat-induced DNA damage preceded apoptosis induction. Strikingly, combined panobinostat/everolimus treatment resulted in sustained DNA damage and irreversible suppression of MM cell proliferation accompanied by robust apoptosis, in contrast to the modest effects induced by single agent. Gene expression analysis revealed distinct genetic profiles of single versus combined exposures. Whereas panobinostat increased the expression of cell cycle inhibitors GADD45G and p21, co-treatment with everolimus abrogated the increase in p21 and synergistically downregulated DNA repair genes, including RAD21, Ku70, Ku80 and DNA-PKcs. Furthermore, combined treatment markedly decreased both mRNA and protein expression of anti-apoptotic factors survivin and BCL-XL, checkpoint regulator CHK1, and G2/M-specific factors PLK1, CDK1 and cyclin B1, therefore suppressing the DNA damage repair and inhibiting mitotic progression. Given the anti-apoptotic role of p21, the synergistic lethal effect of everolimus could be attributed to its ability to suppress p21 induction by panobinostat ensuing the shift in the DNA damage response toward apoptosis. Conclusions: Collectively, our findings indicate that CXCR4/CXCL12 activity promotes the resistance of MM cells to HDACi with panobinostat through mTOR activation. Inhibition of mTOR by everolimus synergizes with panobinostat by simultaneous suppression of p21, G2/M mitotic factors and DNA repair machinery, rendering MM cells incapable of repairing accumulated DNA damage and promoting their apoptosis. Our results unravel the mechanism responsible for strong synergistic anti-MM activity of dual HDAC and mTOR inhibition and provide the rationale for a novel therapeutic strategy to eradicate MM. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11101-11101
Author(s):  
Erica Michelle Stringer ◽  
Maxwell N. Skor ◽  
Gini F. Fleming ◽  
Suzanne D. Conzen

11101 Background: Ovarian cancer is the leading cause of death from gynecologic malignancies. High-grade serous ovarian cancer (HGS-OvCa) is often initially sensitive to platinum-based therapy, but relapse rates remain high. The TCGA recently found that HGS-OvCas have a gene expression and mutational profile similar to that of triple negative breast cancer (TNBC). Previously, our group demonstrated that dexamethasone treatment decreased chemotherapy-induced tumor cell apoptosis in TNBC and HGS-OvCa cell lines. We have also shown that glucocorticoid receptor (GR) activation induces expression of anti-apoptotic genes SGK1 and MKP1/DUSP1 in both HGS-OvCa and TNBC cell lines and in primary human ovarian and TNBC tumors. Methods: We examined glucocorticoid receptor (GR), estrogen receptor (ER), and progesterone receptor (PR) expression in a panel of HGS-OvCa cell lines by Western analysis and qRT-PCR. We also performed apoptosis assays with and without mifepristone, glucocorticoid and/or chemotherapy treatment using IncuCyte live-cell imaging technology in order to measure the effect of GR modulation of chemotherapy sensitivity. Results: HGS-OvCa cell lines (including CAOV3, HeyA8, SKOV3, Monty-1) all had detectable GR expression; HeyA8, SKOV3, and Monty-1 cell lines expressed very low levels of ER-alpha while all other HGS-OvCa cell lines did not express any detectable ER-alpha. Furthermore, none of the HGS-OvCa cell lines tested expressed PR.Apoptosis assays revealed that GR activation significantly inhibited gemcitabine/carboplatin-induced apoptosis in HGS-OvCa cell lines and that mifepristone could reverse this cell survival effect, presumably through GR antagonism. Conclusions: These results suggest that treatment with mifepristone, a GR antagonist, reverses GR-mediated cell survival signaling in HGS-OvCa and increases chemotherapy-induced tumor cell death. To further investigate the role of GR activity in HGS-OvCa, we are currently performing xenograft experiments with chemotherapy +/- mifepristone treatment.


2003 ◽  
Vol 124 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Sixten Körper ◽  
Florian Nolte ◽  
Eckhard Thiel ◽  
Hubert Schrezenmeier ◽  
Markus T. Rojewski

Sign in / Sign up

Export Citation Format

Share Document