scholarly journals Production of Bio-Hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite

Catalysts ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 171-190 ◽  
Author(s):  
Yanyong Liu ◽  
Rogelio Sotelo-Boyás ◽  
Kazuhisa Murata ◽  
Tomoaki Minowa ◽  
Kinya Sakanishi
2009 ◽  
Vol 6 (s1) ◽  
pp. S485-S495 ◽  
Author(s):  
N. Saifuddin ◽  
A. Z. Raziah ◽  
H. Nor Farah

The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality) as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes). Further enhancement was achieved by three phase partitioning (TPP) method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 437
Author(s):  
Ming-Chien Hsiao ◽  
Peir-Horng Liao ◽  
Nguyen Vu Lan ◽  
Shuhn-Shyurng Hou

In this study, low quality oils (waste cooking oils) with high acid value (4.81 mg KOH/g) were utilized as the feedstocks for a transesterification reaction enhanced by additional microwave power and the use of an NaOH catalyst. The kinetics of the transesterification reaction under different reaction times and temperatures was studied. It was found that in the microwave-assisted transesterification reaction, the optimum conditions under a microwave power of 600 W were as follows: an NaOH catalyst of 0.8 wt %, a 12:1 molar ratio of methanol to oil, a reaction time of 2 min, and a reaction temperature of 65 °C. The conversion of waste cooking oil into biodiesel reached 98.2% after this short reaction time. This result conformed to 96.5% of the standard value of Taiwan CNS 15072. In addition, with increases in the reaction temperature from 55 to 65 °C, the reaction rate constant increased from 0.635 to 2.396 min−1, and the activation energy required for the transesterification reaction was 123.14 kJ/mole.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.


Author(s):  
Fiona Rachma Annisa ◽  
Indang Dewata ◽  
Hary Sanjaya ◽  
Latisma Dj ◽  
Ananda Putra ◽  
...  

This work has investigated the reusability of silica-titania in various temperatures (50 – 70°C) of biodiesel production from waste cooking oil. The reused silica-titania catalyst collected from silica-titania catalyst waste produced from the process of separating the catalyst from biodiesel products from palm oil and used cooking oil at various temperatures. The 1st and 2nd reused SiO2-TiO2 were characterized by DR UV-Vis and the spectra were deconvoluted for calculate the fraction of titanium in tetrahedral coordination. In addition the biodiesel products were characterized using FTIR, and several properties of biodiesel such as density, flow rate and acid value were analyzed in order to get the information about catalytic activity reused SiO2-TiO2. The results show the titanium tetrahedral fraction in reused catalyst (1st) and (2nd) are found to be 24,98% and 24.65%, respectively. The FTIR characterization of biodiesel products and waste cooking oil are almost similar. The analysis of waste cooking oil converted to biodiesel shows an optimum temperature of 50oC that at this temperature the lowest density or highest flow rate gave highest conversion of 47.82% using BCR1 and 39.13% using BCR2.


2019 ◽  
Vol 102 (6) ◽  
pp. 1884-1891
Author(s):  
Chong Teng ◽  
Shimin Wu ◽  
Yaqing Sun ◽  
Guangyi Gong

Background: Polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are classes of contaminants that are present in the environment and food. They pose a great threat to human health because of their carcinogenicity and mutagenicity. Very few studies have focused on their concentration in waste cooking oil (WCO) and oil deodorizer distillate (ODD). Objective: This study aimed (1) to design a reliable method to determine 16 PAHs and 4 OPAHs in both WCO and ODD and (2) to determine and analyze PAH and OPAH concentrations in actual samples to provide references for further research. Method: The PAH determination approach included double liquid–liquid extraction, double solid-phase extraction, and GC–triple quadrupole tandem MS determination. Oxidation indices were determined by titrimetry. Results: The method reached good linearity (R2 > 0.99) and an acceptable recovery rate (55.01–126.16% for WCO and 57.48–128.97% for ODD). Ten WCO and five ODD samples were determined, and the total concentration of 16 PAHs varied from 16.34 to 239.01 and 101.08 to 198.04 μg/kg in WCO and ODD, respectively. Among the 16 PAHs, three-ring PAHs typically contributed the most. It was also found that the acid value has a strong correlation with the concentration of OPAHs, probably because of the contribution of free fatty acids to OPAH formation. Conclusions: The proposed method was effective in the analysis of PAHs and OPAHs in WCO and ODD.


Sign in / Sign up

Export Citation Format

Share Document