scholarly journals Neurons Are a Primary Driver of Inflammation Via Release of HMGB1

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2791
Author(s):  
Huan Yang ◽  
Ulf Andersson ◽  
Michael Brines

Recent data show that activation of nociceptive (sensory) nerves turns on localized inflammation within the innervated area in a retrograde manner (antidromically), even in the absence of tissue injury or molecular markers of foreign invaders. This neuroinflammatory process is activated and sustained by the release of neuronal products, such as neuropeptides, with the subsequent amplification via recruitment of immunocompetent cells, including macrophages and lymphocytes. High mobility group box 1 protein (HMGB1) is a highly conserved, well characterized damage-associated molecular pattern molecule expressed by many cells, including nociceptors and is a marker of inflammatory diseases. In this review, we summarize recent evidence showing that neuronal HMGB1 is required for the development of neuroinflammation, as knock out limited to neurons or its neutralization via antibodies ameliorate injury in models of nerve injury and of arthritis. Further, the results of study show that HMGB1 is actively released during neuronal depolarization and thus plays a previously unrecognized key etiologic role in the initiation and amplification of neuroinflammation. Direct targeting of HMGB1 is a promising approach for novel anti-inflammatory therapy.

2022 ◽  
Vol 20 ◽  
Author(s):  
Fathimath Zaha Ikram ◽  
Alina Arulsamy ◽  
Thaarvena Retinasamy ◽  
Mohd. Farooq Shaikh

Background: High mobility group box 1 (HMGB1) protein is a damage-associated molecular pattern (DAMP) molecule that plays an important role in the repair and regeneration of tissue injury. It also acts as a pro-inflammatory cytokine through the activation of toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE), to elicit the neuroinflammatory response. HMGB1 may aggravate several cellular responses which may lead to pathological inflammation and cellular death. Thus, there have been a considerable amount of research into the pathological role of HMGB1 in diseases. However, whether the mechanism of action of HMGB1 is similar in all neurodegenerative disease pathology remains to be determined. Objective: Therefore, this systematic review aimed to critically evaluate and elucidate the role of HMGB1 in the pathology of neurodegeneration based on the available literature. Methods: A comprehensive literature search was performed on four databases; EMBASE, PubMed, Scopus, and CINAHL Plus. Results: A total of 85 articles were selected for critical appraisal, after subjecting to the inclusion and exclusion criteria in this study. The selected articles revealed that HMGB1 levels were found elevated in most neurodegeneration except in Huntington’s disease and Spinocerebellar ataxia, where the levels were found decreased. This review also showcased that HMGB1 may act on distinctive pathways to elicit its pathological response leading to the various neurodegeneration processes/diseases. Conclusion: While there have been promising findings in HMGB1 intervention research, further studies may still be required before any HMGB1 intervention may be recommended as a therapeutic target for neurodegenerative diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guozhen Wang ◽  
Siyi Jin ◽  
Weichang Huang ◽  
Yang Li ◽  
Jun Wang ◽  
...  

AbstractExtracellular vesicles (EVs) have emerged as important vectors of intercellular dialogue. High mobility group box protein 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, which is cytotoxic and leads to cell death and tissue injury. Whether EVs are involved in the release of HMGB1 in lipopolysaccharide (LPS)-induced acute liver injuries need more investigation. EVs were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA), and western blotting. The co-localization of HMGB1, RAGE (receptor for advanced glycation end-products), EEA1, Rab5, Rab7, Lamp1 and transferrin were detected by confocal microscopy. The interaction of HMGB1 and RAGE were investigated by co-immunoprecipitation. EVs were labeled with the PKH67 and used for uptake experiments. The pyroptotic cell death was determined by FLICA 660-YVAD-FMK. The expression of NLRP3 (NOD-like receptor family pyrin domain containing 3) inflammasomes were analyzed by western-blot or immunohistochemistry. Serum HMGB1, ALT (alanine aminotransferase), AST (aspartate aminotransferase), LDH (lactate dehydrogenase) and MPO (myeloperoxidase) were measured using a commercial kit. The extracellular vesicle HMGB1 was detected in the serums of sepsis patients. Macrophages were found to contribute to HMGB1 release through the EVs. HMGB1-RAGE interactions participated in the loading of HMGB1 into the EVs. These EVs shuttled HMGB1 to target cells by transferrin-mediated endocytosis leading to hepatocyte pyroptosis by the activation of NLRP3 inflammasomes. Moreover, a positive correlation was verified between the sepsis serum EVs-HMGB1 level and clinical liver damage. This finding provides insights for the development of novel diagnostic and therapeutic strategies for acute liver injuries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuqing Jin ◽  
En Zheng ◽  
Candice Sareli ◽  
Pappachan E. Kolattukudy ◽  
Jianli Niu

Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Heshuang Qu ◽  
Erik Sundberg ◽  
Cecilia Aulin ◽  
Manoj Neog ◽  
Karin Palmblad ◽  
...  

Abstract Background This study aimed to perform an immunoprofiling of systemic juvenile idiopathic arthritis (sJIA) in order to define biomarkers of clinical use as well as reveal new immune mechanisms. Methods Immunoprofiling of plasma samples from a clinically well-described cohort consisting of 21 sJIA patients as well as 60 age and sex matched healthy controls, was performed by a highly sensitive proteomic immunoassay. Based on the biomarkers being significantly up- or down-regulated in cross-sectional and paired analysis, related canonical pathways and cellular functions were explored by Ingenuity Pathway Analysis (IPA). Results The well-studied sJIA biomarkers, IL6, IL18 and S100A12, were confirmed to be increased during active sJIA as compared to healthy controls. IL18 was the only factor found to be increased during inactive sJIA as compared to healthy controls. Novel factors, including CASP8, CCL23, CD6, CXCL1, CXCL11, CXCL5, EIF4EBP1, KITLG, MMP1, OSM, SIRT2, SULT1A1 and TNFSF11, were found to be differentially expressed in active and/or inactive sJIA and healthy controls. No significant pathway activation could be predicted based on the limited factor input to the IPA. High Mobility Group Box 1 (HMGB1), a damage associated molecular pattern being involved in a series of inflammatory diseases, was determined to be higher in active sJIA than inactive sJIA. Conclusions We could identify a novel set of biomarkers distinguishing active sJIA from inactive sJIA or healthy controls. Our findings enable a better understanding of the immune mechanisms active in sJIA and aid the development of future diagnostic and therapeutic strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jong Min Choi ◽  
Seung Eun Baek ◽  
Ji On Kim ◽  
Eun Yeong Jeon ◽  
Eun Jeong Jang ◽  
...  

AbstractMonocyte chemoattractant protein-1 (MCP-1) plays an important role in initiating vascular inflammation; however, its cellular source in the injured vasculatures is unclear. Given the importance of high mobility group box 1 (HMGB1) in tissue injury, we investigated the role of vascular smooth muscle cells (VSMCs) in MCP-1 production in response to HMGB1. In primary cultured rat aortic VSMCs stimulated with HMGB1, the expression of MCP-1 and 5-lipoxygenase (LO) was increased. The increased MCP-1 expression in HMGB1 (30 ng/ml)-stimulated cells was significantly attenuated in 5-LO-deficient cells as well as in cells treated with zileuton, a 5-LO inhibitor. Likewise, MCP-1 expression and production were also increased in cells stimulated with exogenous leukotriene B4 (LTB4), but not exogenous LTC4. LTB4-induced MCP-1 expression was attenuated in cells treated with U75302, a LTB4 receptor 1 (BLTR1) inhibitor as well as in BLTR1-deficient cells, but not in 5-LO-deficient cells. Moreover, HMGB1-induced MCP-1 expression was attenuated in BLTR1-deficient cells or by treatment with a BLTR1 inhibitor, but not other leukotriene receptor inhibitors. In contrast to MCP-1 expression in response to LTB4, the increased MCP-1 production in HMGB1-stimulated VSMC was markedly attenuated in 5-LO-deficient cells, indicating a pivotal role of LTB4-BLTR1 signaling in MCP-1 expression in VSMCs. Taken together, 5-LO-derived LTB4 plays a key role in MCP-1 expression in HMGB1-exposed VSMCs via BLTR1 signaling, suggesting the LTB4-BLTR1 signaling axis as a potential therapeutic target for vascular inflammation in the injured vasculatures.


2021 ◽  
Vol 28 ◽  
Author(s):  
Thaise Martins ◽  
Bruno M. Fonseca ◽  
Irene Rebelo

: Reactive oxygen/nitrogen species (ROS/RNS) are produced physiologically by several mechanisms, especially during the inflammatory response. However, their overproduction can lead to the evolution of conditions known as oxidative/nitrosative stress, resulting in the establishment of chronic inflammatory diseases. Chalcones are considered as a class of flavonoids having the molecular pattern 1,3-diaryl-2-propen-1-one. In the last few years, the antioxidant property of chalcones has been extensively studied, mainly due to their ability to inhibit the production or scavenging ROS/RNS. The present review demonstrated and discussed the antioxidant activity of chalcones, focusing on the production of ROS/RNS during the inflammatory response. This literature revision was based on the modulatory effects of chalcones against different enzymes, such as superoxide dismutase (SOD), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, catalase (CAT), myeloperoxidase (MPO), and inducible nitric oxide synthase (iNOS) and, in the scavenging of ROS/RNS. Whenever possible, the structure-activity relationship (SAR) was established. Through the analysis accomplished in this review, it can be observed that the presence of substituents, e.g., hydroxyl, methoxyl, prenyl, and halogen atoms in the chalcones scaffold, often occurs and can improve their modulatory activities, namely, in the production of ROS/RNS during the inflammatory response.


Author(s):  
Jamie E Meegan ◽  
Julie A. Bastarache ◽  
Lorraine B. Ware

Levels of circulating cell-free hemoglobin are elevated during hemolytic and inflammatory diseases and contribute to organ dysfunction and severity of illness. Though several studies have investigated the contribution of hemoglobin to tissue injury, the precise signaling mechanisms of hemoglobin-mediated endothelial dysfunction in the lung and other organs are not yet completely understood. The purpose of this review is to highlight the knowledge gained thus far and the need for further investigation regarding hemoglobin-mediated endothelial inflammation and injury in order to develop novel therapeutic strategies targeting the damaging effects of cell-free hemoglobin.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Jamal Uddin ◽  
Chun-shi Li ◽  
Yeonsoo Joe ◽  
Yingqing Chen ◽  
Qinggao Zhang ◽  
...  

Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammationin vitroandin vivo.


2021 ◽  
Vol 22 (20) ◽  
pp. 11276
Author(s):  
Fabian Essig ◽  
Lilith Babilon ◽  
Christoph Vollmuth ◽  
Alexander M. Kollikowski ◽  
Mirko Pham ◽  
...  

High-mobility group box 1 protein (HMGB1) is a damage-associated molecular pattern (DAMP) involved in neutrophil extracellular trap (NET) formation and thrombosis. NETs are regularly found in cerebral thromboemboli. We here analyzed associated HMGB1 expression in human thromboemboli retrieved via mechanical thrombectomy from 37 stroke patients with large vessel occlusion. HMGB1 was detected in all thromboemboli, accounting for 1.7% (IQR 0.6–6.2%) of the total thromboemboli area and was found to be colocalized with neutrophils and NETs and in spatial proximity to platelets. Correlation analysis revealed that the detection of HMGB1 was strongly related to the number of neutrophils (r = 0.58, p = 0.0002) and platelets (r = 0.51, p = 0.001). Our results demonstrate that HMGB1 is a substantial constituent of thromboemboli causing large vessel occlusion stroke.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253852
Author(s):  
Samit Ganguly ◽  
David Finkelstein ◽  
Timothy I. Shaw ◽  
Ryan D. Michalek ◽  
Kimberly M. Zorn ◽  
...  

Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.


Sign in / Sign up

Export Citation Format

Share Document