scholarly journals Electrophysiological Consequences of Cardiac Fibrosis

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3220
Author(s):  
Sander Verheule ◽  
Ulrich Schotten

For both the atria and ventricles, fibrosis is generally recognized as one of the key determinants of conduction disturbances. By definition, fibrosis refers to an increased amount of fibrous tissue. However, fibrosis is not a singular entity. Various forms can be distinguished, that differ in distribution: replacement fibrosis, endomysial and perimysial fibrosis, and perivascular, endocardial, and epicardial fibrosis. These different forms typically result from diverging pathophysiological mechanisms and can have different consequences for conduction. The impact of fibrosis on propagation depends on exactly how the patterns of electrical connections between myocytes are altered. We will therefore first consider the normal patterns of electrical connections and their regional diversity as determinants of propagation. Subsequently, we will summarize current knowledge on how different forms of fibrosis lead to a loss of electrical connectivity in order to explain their effects on propagation and mechanisms of arrhythmogenesis, including ectopy, reentry, and alternans. Finally, we will discuss a histological quantification of fibrosis. Because of the different forms of fibrosis and their diverging effects on electrical propagation, the total amount of fibrosis is a poor indicator for the effect on conduction. Ideally, an assessment of cardiac fibrosis should exclude fibrous tissue that does not affect conduction and differentiate between the various types that do; in this article, we highlight practical solutions for histological analysis that meet these requirements.

2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


Cartilage ◽  
2021 ◽  
pp. 194760352198942
Author(s):  
Kazunori Shimomura ◽  
Hidetoshi Hamada ◽  
David A. Hart ◽  
Wataru Ando ◽  
Takashi Nishii ◽  
...  

Objective The aim of this study was to elucidate the efficacy of T2-mapping MRI and correlation with histology for the evaluation of tissue repair quality following the first-in-human implantation of an autologous tissue engineered construct. Design We directly compared the results of T2-mapping MRI of cartilage repair tissue with the histology of a biopsy specimen from the corresponding area at 48 weeks postoperatively in 5 patients who underwent the implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells to repair an isolated cartilage lesion. T2 values and histological scores were compared at each of 2 layers of equally divided halves of the repair tissue (upper and lower zones). Results Histology showed that the repair tissue in the upper zone was dominated by fibrous tissue and the ratio of hyaline-like matrix increased with the depth of the repair tissue. There were significant differences between upper and lower zones in histological scores. Conversely, there were no detectable statistically significant differences in T2 value detected among zones of the repair tissue, but zonal differences were detected in corresponding healthy cartilage. Accordingly, there were no correlations detected between histological scores and T2 values for each repair cartilage zone. Conclusion Discrepancies in the findings between T2 mapping and histology suggest that T2 mapping was limited in ability to detect details in the architecture and composition of the repair cartilage.


2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kendall A. Johnson ◽  
Clive H. Bock ◽  
Phillip M. Brannen

Abstract Background Phony peach disease (PPD) is caused by the plant pathogenic bacterium Xylella fastidiosa subsp. multiplex (Xfm). Historically, the disease has caused severe yield loss in Georgia and elsewhere in the southeastern United States, with millions of PPD trees being removed from peach orchards over the last century. The disease remains a production constraint, and management options are few. Limited research has been conducted on PPD since the 1980s, but the advent of new technologies offers the opportunity for new, foundational research to form a basis for informed management of PPD in the U.S. Furthermore, considering the global threat of Xylella to many plant species, preventing import of Xfm to other regions, particularly where peach is grown, should be considered an important phytosanitary endeavor. Main topics We review PPD, its history and impact on peach production, and the eradication efforts that were conducted for 42 years. Additionally, we review the current knowledge of the pathogen, Xfm, and how that knowledge relates to our understanding of the peach—Xylella pathosystem, including the epidemiology of the disease and consideration of the vectors. Methods used to detect the pathogen in peach are discussed, and ramifications of detection in relation to management and control of PPD are considered. Control options for PPD are limited. Our current knowledge of the pathogen diversity and disease epidemiology are described, and based on this, some potential areas for future research are also considered. Conclusion There is a lack of recent foundational research on PPD and the associated strain of Xfm. More research is needed to reduce the impact of this pathogen on peach production in the southeastern U.S., and, should it spread internationally, wherever peaches are grown.


2021 ◽  
Vol 10 (7) ◽  
pp. 1490
Author(s):  
Ana Reis ◽  
Sara Rocha ◽  
Victor de Freitas

During the 20th century processed and ready-to-eat foods became routinely consumed resulting in a sharp rise of fat, salt, and sugar intake in people’s diets. Currently, the global incidence of obesity, raised blood lipids, hypertension, and diabetes in an increasingly aged population contributes to the rise of atherothrombotic events and cardiovascular diseases (CVD) mortality. Drug-based therapies are valuable strategies to tackle and help manage the socio-economic impact of atherothrombotic disorders though not without adverse side effects. The inclusion of fresh fruits and vegetables rich in flavonoids to human diets, as recommended by WHO offers a valuable nutritional strategy, alternative to drug-based therapies, to be explored in the prevention and management of atherothrombotic diseases at early stages. Though polyphenols are mostly associated to color and taste in foods, food flavonoids are emerging as modulators of cholesterol biosynthesis, appetite and food intake, blood pressure, platelet function, clot formation, and anti-inflammatory signaling, supporting the health-promoting effects of polyphenol-rich diets in mitigating the impact of risk factors in atherothrombotic disorders and CVD events. Here we overview the current knowledge on the effect of polyphenols particularly of flavonoid intake on the atherothrombotic risk factors and discuss the caveats and challenges involved with current experimental cell-based designs.


2021 ◽  
Vol 11 (6) ◽  
pp. 483
Author(s):  
Marwa Saadaoui ◽  
Manoj Kumar ◽  
Souhaila Al Khodor

The COVID-19 pandemic is a worldwide, critical public health challenge and is considered one of the most communicable diseases that the world had faced so far. Response and symptoms associated with COVID-19 vary between the different cases recorded, but it is amply described that symptoms become more aggressive in subjects with a weaker immune system. This includes older subjects, patients with chronic diseases, patients with immunosuppression treatment, and pregnant women. Pregnant women are receiving more attention not only because of their altered physiological and immunological function but also for the potential risk of viral vertical transmission to the fetus or infant. However, very limited data about the impact of maternal infection during pregnancy, such as the possibility of vertical transmission in utero, during birth, or via breastfeeding, is available. Moreover, the impact of infection on the newborn in the short and long term remains poorly understood. Therefore, it is vital to collect and analyze data from pregnant women infected with COVID-19 to understand the viral pathophysiology during pregnancy and its effects on the offspring. In this article, we review the current knowledge about pre-and post-natal COVID-19 infection, and we discuss whether vertical transmission takes place in pregnant women infected with the virus and what are the current recommendations that pregnant women should follow in order to be protected from the virus.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 909
Author(s):  
Krzysztof Kotowski ◽  
Jakub Rosik ◽  
Filip Machaj ◽  
Stanisław Supplitt ◽  
Daniel Wiczew ◽  
...  

Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Lucía Fuentes ◽  
Tamás Rőszer ◽  
Mercedes Ricote

Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.


2020 ◽  
Vol 21 (24) ◽  
pp. 9729
Author(s):  
Jakub Litak ◽  
Marek Mazurek ◽  
Bartłomiej Kulesza ◽  
Paweł Szmygin ◽  
Joanna Litak ◽  
...  

Cerebral small vessel disease (CSVD) represents a cluster of various vascular disorders with different pathological backgrounds. The advanced vasculature net of cerebral vessels, including small arteries, capillaries, arterioles and venules, is usually affected. Processes of oxidation underlie the pathology of CSVD, promoting the degenerative status of the epithelial layer. There are several classifications of cerebral small vessel diseases; some of them include diseases such as Binswanger’s disease, leukoaraiosis, cerebral microbleeds (CMBs) and lacunar strokes. This paper presents the characteristics of CSVD and the impact of the current knowledge of this topic on the diagnosis and treatment of patients.


2020 ◽  
Vol 21 (20) ◽  
pp. 7697 ◽  
Author(s):  
Malvina Koni ◽  
Veronica Pinnarò ◽  
Maria Felice Brizzi

Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/β-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/β-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/β-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/β-catenin pathway is also discussed.


Sign in / Sign up

Export Citation Format

Share Document