scholarly journals Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 139
Author(s):  
Kinga Panuciak ◽  
Mikołaj Margas ◽  
Karolina Makowska ◽  
Monika Lejman

Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 105
Author(s):  
Matthias Böhme ◽  
Sabine Kayser

The development and design of immune-based strategies have become an increasingly important topic during the last few years in acute myeloid leukemia (AML), based on successful immunotherapies in solid cancer. The spectrum ranges from antibody drug conjugates, immune checkpoint inhibitors blocking programmed cell death protein 1 (PD1), cytotoxic T lymphocyte antigen 4 (CTLA4) or T cell immunoglobulin and mucin domain containing-3 (TIM3), to T-cell based monoclonal and bispecific T-cell engager antibodies, chimeric antigen receptor-T-cell (CAR-T) approaches and leukemia vaccines. Currently, there are many substances in development and multiple phase I/II studies are ongoing. These trials will help us to deepen our understanding of the pathogenesis of AML and facilitate the best immunotherapeutic strategy in AML. We discuss here the mode of action of immune-based therapies and provide an overview of the available data.


2020 ◽  
Vol 4 (1) ◽  
pp. 353-370
Author(s):  
Kristopher R. Bosse ◽  
Robbie G. Majzner ◽  
Crystal L. Mackall ◽  
John M. Maris

Immune-based therapies have now been credentialed for pediatric cancers with the robust efficacy of chimeric antigen receptor (CAR) T cells for pediatric B cell acute lymphocytic leukemia (ALL), offering a chance of a cure for children with previously lethal disease and a potentially more targeted therapy to limit treatment-related morbidities. The developmental origins of most pediatric cancers make them ideal targets for immune-based therapies that capitalize on the differential expression of lineage-specific cell surface molecules such as antibodies, antibody-drug conjugates, or CAR T cells, while the efficacy of other therapies that depend on tumor immunogenicity such as immune checkpoint inhibitors has been limited to date. Here we review the current status of immune-based therapies for childhood cancers, discuss challenges to developing immunotherapeutics for these diseases, and outline future directions of pediatric immunotherapy discovery and development.


2020 ◽  
Vol 21 (17) ◽  
pp. 6251 ◽  
Author(s):  
Laura Anselmi ◽  
Salvatore Nicola Bertuccio ◽  
Annalisa Lonetti ◽  
Arcangelo Prete ◽  
Riccardo Masetti ◽  
...  

Nowadays, thanks to extensive studies and progress in precision medicine, pediatric leukemia has reached an extremely high overall survival rate. Nonetheless, a fraction of relapses and refractory cases is still present, which are frequently correlated with poor prognosis. Although several molecular features of these diseases are known, still the field of energy metabolism, which is widely studied in adult, has not been frequently explored in childhood leukemias. Metabolic reprogramming is a hallmark of cancer and is deeply connected with other genetic and signaling aberrations generally known to be key features of both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This review aims to clear the current knowledge on metabolic rewiring in pediatric ALL and AML, also highlighting the influence of the main signaling pathways and suggesting potential ideas to further exploit this field to discover new prognostic biomarkers and, above all, beneficial therapeutic options.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Elisa Dorantes-Acosta ◽  
Rosana Pelayo

Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.


2021 ◽  
Vol 22 (12) ◽  
pp. 6492
Author(s):  
Paola Giussani ◽  
Alessandro Prinetti ◽  
Cristina Tringali

Immunotherapy is now considered an innovative and strong strategy to beat metastatic, drug-resistant, or relapsing tumours. It is based on the manipulation of several mechanisms involved in the complex interplay between cancer cells and immune system that culminates in a form of immune-tolerance of tumour cells, favouring their expansion. Current immunotherapies are devoted enforcing the immune response against cancer cells and are represented by approaches employing vaccines, monoclonal antibodies, interleukins, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cells. Despite the undoubted potency of these treatments in some malignancies, many issues are being investigated to amplify the potential of application and to avoid side effects. In this review, we discuss how sphingolipids are involved in interactions between cancer cells and the immune system and how knowledge in this topic could be employed to enhance the efficacy of different immunotherapy approaches. In particular, we explore the following aspects: how sphingolipids are pivotal components of plasma membranes and could modulate the functionality of surface receptors expressed also by immune cells and thus their functionality; how sphingolipids are related to the release of bioactive mediators, sphingosine 1-phosphate, and ceramide that could significantly affect lymphocyte egress and migration toward the tumour milieu, in addition regulating key pathways needed to activate immune cells; given the renowned capability of altering sphingolipid expression and metabolism shown by cancer cells, how it is possible to employ sphingolipids as antigen targets.


2016 ◽  
Author(s):  
Richard A. Larson ◽  
Roland B Walter

The acute leukemias are malignant clonal disorders characterized by aberrant differentiation and proliferation of transformed hematopoietic progenitor cells. These cells accumulate within the bone marrow and lead to suppression of the production of normal blood cells, with resulting symptoms from varying degrees of anemia, neutropenia, and thrombocytopenia or from infiltration into tissues. They are currently classified by their presumed cell of origin, although the field is moving rapidly to genetic subclassification. This review covers epidemiology; etiology; classification of leukemia by morphology, immunophenotyping, and cytogenetic/molecular abnormalities; cytogenetics of acute leukemia; general principles of therapy; acute myeloid leukemia; acute lymphoblastic leukemia; and future possibilities. The figure shows the incidence of acute leukemias in the United States. Tables list World Health Organization (WHO) classification of acute myeloid leukemia and related neoplasms, expression of cell surface and cytoplasmic markers for the diagnosis of acute myeloid leukemia and mixed-phenotype acute leukemia, WHO classification of acute lymphoblastic leukemia, WHO classification of acute leukemias of ambiguous lineage, WHO classification of myelodysplastic syndromes, European LeukemiaNet cytogenetic and molecular genetic subsets in acute myeloid leukemia with prognostic importance, cytogenetic and molecular subtypes of acute lymphoblastic leukemia, terminology used in leukemia treatment, and treatment outcome for adults with acute leukemia. This review contains 1 highly rendered figure, 9 tables, and 117 references.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3504
Author(s):  
Silvia Pesce ◽  
Sara Trabanelli ◽  
Clara Di Vito ◽  
Marco Greppi ◽  
Valentina Obino ◽  
...  

Immune checkpoints refer to a plethora of inhibitory pathways of the immune system that play a crucial role in maintaining self-tolerance and in tuning the duration and amplitude of physiological immune responses to minimize collateral tissue damages. The breakdown of this delicate balance leads to pathological conditions, including cancer. Indeed, tumor cells can develop multiple mechanisms to escape from immune system defense, including the activation of immune checkpoint pathways. The development of monoclonal antibodies, targeting inhibitory immune checkpoints, has provided an immense breakthrough in cancer therapy. Immune checkpoint inhibitors (ICI), initially developed to reverse functional exhaustion in T cells, recently emerged as important actors in natural killer (NK)-cell-based immunotherapy. Moreover, the discovery that also helper innate lymphoid cells (ILCs) express inhibitory immune checkpoints, suggests that these molecules might be targeted on ILCs, to modulate their functions in the tumor microenvironment. Recently, other strategies to achieve immune checkpoint blockade have been developed, including miRNA exploiting systems. Herein, we provide an overview of the current knowledge on inhibitory immune checkpoints on NK cells and ILCs and we discuss how to target these innate lymphocytes by ICI in both solid tumors and hematological malignancies.


2018 ◽  
Vol 9 (6) ◽  
pp. 135-148 ◽  
Author(s):  
Sarah K Tasian

Chemotherapy resistance and relapse remain significant sources of mortality for children and adults with acute myeloid leukemia (AML). Further intensification of conventional cytotoxic chemotherapy is likely not feasible due to the severity of acute and long-term side effects upon normal tissues commonly induced by these drugs. Successful development and implementation of new precision medicine treatment approaches for patients with AML, which may improve leukemia remission and diminish toxicity, is thus a major priority. Tumor antigen-redirected chimeric antigen receptor (CAR) T-cell immunotherapies have induced remarkable responses in patients with relapsed or chemorefractory B-lymphoblastic leukemia, and similar strategies are now under early clinical study in adults with relapsed/refractory AML. However, potential on target/off tumor toxicity of AML CAR T-cell immunotherapies, notably aplasia of normal myeloid cells, may limit broader implementation of such approaches. Careful selection of optimal target antigens, consideration of toxicity mitigation strategies, and development of methodologies to circumvent potential CAR T-cell resistance are essential for successful implementation of cellular immunotherapies for patients with high-risk AML.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 940-947 ◽  
Author(s):  
Stefan Faderl ◽  
Varsha Gandhi ◽  
Susan O'Brien ◽  
Peter Bonate ◽  
Jorge Cortes ◽  
...  

AbstractClofarabine (2-chloro-2′-fluoro-deoxy-9-β-D-arabinofuranosyladenine) is a second-generation nucleoside analog with activity in acute leukemias. As clofarabine is a potent inhibitor of ribonucleotide reductase (RnR), we hypothesized that clofarabine will modulate ara-c triphosphate accumulation and increase the antileukemic activity of cytarabine (ara-C). We conducted a phase 1-2 study of clofarabine plus ara-C in 32 patients with relapsed acute leukemia (25 acute myeloid leukemia [AML], 2 acute lymphoblastic leukemia [ALL]), 4 high-risk myelodysplastic syndrome (MDS), and 1 blast-phase chronic myeloid leukemia (CML).1 Clofarabine was given as a 1-hour intravenous infusion for 5 days (days 2 through 6) followed 4 hours later by ara-C at 1 g/m2 per day as a 2-hour intravenous infusion for 5 days (days 1 through 5). The phase 2 dose of clofarabine was 40 mg/m2 per day for 5 days. Among all patients, 7 (22%) achieved complete remission (CR), and 5 (16%) achieved CR with incomplete platelet recovery (CRp), for an overall response rate of 38%. No responses occurred in 3 patients with ALL and CML. One patient (3%) died during induction. Adverse events were mainly less than or equal to grade 2, including transient liver test abnormalities, nausea/vomiting, diarrhea, skin rashes, mucositis, and palmoplantar erythrodysesthesias. Plasma clofarabine levels generated clofarabine triphosphate accumulation, which resulted in an increase in ara-CTP in the leukemic blasts. The combination of clofarabine with ara-C is safe and active. Cellular pharmacology data support the biochemical modulation strategy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gabriele Merati ◽  
Marianna Rossi ◽  
Anna Gallì ◽  
Elisa Roncoroni ◽  
Silvia Zibellini ◽  
...  

Acute leukemia of ambiguous lineage (ALAL) is a rare type of leukemia and represents an unmet clinical need. In fact, due to heterogeneity, substantial rarity and absence of clinical trials, there are no therapeutic guidelines available. We investigated the genetic basis of 10 cases of ALAL diagnosed at our centre from 2008 and 2020, through a targeted myeloid and lymphoid sequencing approach. We show that this rare group of acute leukemias is enriched in myeloid-gene mutations. In particular we found that RUNX1 mutations, which have been found double mutated in 40% of patients and tend to involve both alleles, are associated with an undifferentiated phenotype and with lineage ambiguity. Furthermore, because this feature is typical of acute myeloid leukemia with minimal differentiation, we believe that our data strengthen the idea that acute leukemia with ambiguous lineage, especially those with an undifferentiated phenotype, might be genetically more closer to acute myeloid leukemia rather than acute lymphoblastic leukemia. These data enrich the knowledge on the genetic basis of ALAL and could have clinical implications as an acute myeloid leukemia (AML) – oriented chemotherapeutic approach might be more appropriate.


Sign in / Sign up

Export Citation Format

Share Document