scholarly journals New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration

Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 220 ◽  
Author(s):  
Michela Deiana ◽  
Luca Dalle Carbonare ◽  
Michela Serena ◽  
Samuele Cheri ◽  
Francesca Parolini ◽  
...  

The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.

2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Jiu-Jiang Wang ◽  
Zhi-Feng Li ◽  
Xiao-Jing Li ◽  
Zhao Han ◽  
Ling Zhang ◽  
...  

The study aims to evaluate the effects of miR-136 on the proliferation, apoptosis, and epithelial–mesenchymal transition (EMT) of melanoma cells by targetting premelanosome protein (PMEL) through the Wnt signaling pathway. After establishment of melanoma mouse models, melanoma (model group) and normal tissues (normal group) were collected. Immunohistochemistry was performed to determine PMEL protein concentration. Mouse melanoma cells were assigned into control, blank, negative control (NC), miR-136 mimics, miR-136 inhibitors, siRNA-PMEL, and miR-136 inhibitors + siRNA-PMEL, LiC1 (Wnt signaling pathway activator), and siRNA-PMEL+ LiCl groups. MTT, Scratch test, Transwell assay, and flow cytometry were performed to measure cell proliferation, migration, invasion, and apoptosis. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to evaluate miR-136, PMEL, β-catenin, Wnt3a, Bcl-2, Bax, Caspase, E-cadherin, and N-cadherin expressions. PMEL is highly expressed in melanoma tissues. MiR-136, Bax, Caspase, and E-cadherin expressions decreased in the model group, whereas PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions increased. Bax, Caspase, and E-cadherin expressions increased in the miR-136 mimics and siRNA-PMEL groups, whereas the expressions decreased in the miR-136 inhibitors group and LiC1 group. PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions, cell proliferation, migration, and invasion decreased, and the apoptosis rate inceased in the miR-136 mimics and siRNA-PMEL groups; whereas the tendencies were opposite to those in the miR-136 inhibitors group and LiC1 group. In the siRNA-PMEL+ LiCl group, PMEL expression decreased. These findings indicated that overexpression of miR-136 inhibits melanoma cell EMT, proliferation, migration, invasion, and promotes apoptosis by targetting PMEL through down-regulation of the Wnt signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhiqiang He ◽  
Shun Lei ◽  
Fucheng Liang ◽  
Liuchang Tan ◽  
Weinan Zhang ◽  
...  

Albendazole (ABZ) is an effective broad-spectrum anthelmintic agent that has been widely used for humans and animals. Previous studies have reported that ABZ exhibits antitumor effects against melanoma and other different cancer types; however, it is unknown whether ABZ exerts the inhibitory effect against melanoma metastasis. In this study, we aimed to investigate the inhibitory effect of ABZ on melanoma cells. Through in vitro studies, we discovered that low-dose ABZ treatment significantly inhibited the migration and invasion, but not the proliferation, of A375 and B16-F10 cells in a dose-dependent manner. Further analysis revealed that ABZ treatment reduced the expression level of snail family transcriptional repressor 1 (Snail) in the cytoplasm and nucleus by decreasing the levels of phosphorylated AKT (pAKT) Ser473/GSK-3β (pGSK-3β) Ser9 and increasing pGSK-3β/Tyr216, resulting in a significant upregulation of E-cadherin and downregulation of N-cadherin and ultimately reversing the epithelial-mesenchymal transition (EMT) process of melanoma cells. In contrast, the continuous activation of AKT via transfected plasmids elevated the protein levels of pAKT Ser473/pGSK-3β Ser9 and Snail and antagonized the inhibitory action of ABZ. We also confirmed that ABZ treatment effectively inhibited the lung metastasis of melanoma in nude mice in vivo. Subsequent immunohistochemical analysis verified the decreased pAKT Ser473/pGSK-3β Ser9 and increased pGSK-3β/Tyr216 levels in ABZ-treated subcutaneous tumors. Therefore, our findings demonstrate that ABZ treatment can suppress the EMT progress of melanoma by increasing the pGSK-3β/Tyr216-mediated degradation of Snail, which may be used as a potential treatment strategy for metastatic melanoma.


2018 ◽  
Vol 19 (10) ◽  
pp. 2860 ◽  
Author(s):  
Jonathan Lim ◽  
Yuet Kwan ◽  
Michelle Tan ◽  
Melissa Teo ◽  
Shunsuke Chiba ◽  
...  

Background: Peroxisome proliferator–activated receptor (PPAR) β/δ, a ligand-activated transcription factor, is involved in diverse biological processes including cell proliferation, cell differentiation, inflammation and energy homeostasis. Besides its well-established roles in metabolic disorders, PPARβ/δ has been linked to carcinogenesis and was reported to inhibit melanoma cell proliferation, anchorage-dependent clonogenicity and ectopic xenograft tumorigenicity. However, PPARβ/δ’s role in tumour progression and metastasis remains controversial. Methods: In the present studies, the consequence of PPARβ/δ inhibition either by global genetic deletion or by a specific PPARβ/δ antagonist, 10h, on malignant transformation of melanoma cells and melanoma metastasis was examined using both in vitro and in vivo models. Results: Our study showed that 10h promotes epithelial-mesenchymal transition (EMT), migration, adhesion, invasion and trans-endothelial migration of mouse melanoma B16/F10 cells. We further demonstrated an increased tumour cell extravasation in the lungs of wild-type mice subjected to 10h treatment and in Pparβ/δ−/− mice in an experimental mouse model of blood-borne pulmonary metastasis by tail vein injection. This observation was further supported by an increased tumour burden in the lungs of Pparβ/δ−/− mice as demonstrated in the same animal model. Conclusion: These results indicated a protective role of PPARβ/δ in melanoma progression and metastasis.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Jinyuan Ma ◽  
Huina Wang ◽  
Sen Guo ◽  
Xiuli Yi ◽  
Tao Zhao ◽  
...  

Abstract Melanoma is the most life-threatening skin cancer with increasing incidence around the world. Although recent advances in targeted therapy and immunotherapy have brought revolutionary progress of the treatment outcome, the survival of patients with advanced melanoma remains unoptimistic, and metastatic melanoma is still an incurable disease. Therefore, to further understand the mechanism underlying melanoma pathogenesis could be helpful for developing novel therapeutic strategy. A20 is a crucial ubiquitin-editing enzyme implicated immunity regulation, inflammatory responses and cancer pathogenesis. Herein, we report that A20 played an oncogenic role in melanoma. We first found that the expression of A20 was significantly up-regulated in melanoma cell lines. Then, we showed that knockdown of A20 suppressed melanoma cell proliferation in vitro and melanoma growth in vivo through the regulation of cell-cycle progression. Moreover, A20 could potentiate the invasive and migratory capacities of melanoma cell in vitro and melanoma metastasis in vivo by promoting epithelial–mesenchymal transition (EMT). Mechanistically, we found that Akt activation mediated the oncogenic effect of A20 on melanoma development, with the involvement of glycolysis. What’s more, the up-regulation of A20 conferred the acquired resistance to Vemurafenib in BRAF-mutant melanoma. Taken together, we demonstrated that up-regulated A20 promoted melanoma progression via the activation of Akt pathway, and that A20 could be exploited as a potential therapeutic target for melanoma treatment.


Author(s):  
Wenkang Luan ◽  
Yuting Ding ◽  
Haolan Xi ◽  
Hongru Ruan ◽  
Feng Lu ◽  
...  

Abstract Background Cancer-secreted exosomal miRNAs regulates the biological processes of many tumours. The serum level of exosomal miR-106b-5p is significantly increased in melanoma patients. However, the role and molecular mechanisms of exosomal miR-106b-5p in melanoma remains unclear. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-106b-5p and EphA4 in melanoma tissues. Transmission electron microscopy (TEM) and western blotting were used to identify exosome. QRT-qPCR and Cy3-labelled miR-106b-5p were used to demonstrated the transmission of melanoma cell-secreted exosomal miR-106b-5p. Western blotting, Immunofluorescence, adhesion, transwell and scratch wound assay were used to explore the role of exosomal miR-106b-5p in melanocytes. Luciferase reporter assays and RNA-Chromatin Immunoprecipitation (ChIP) assay were used to confirm whether erythropoietin-producing hepatocellular carcinoma receptor A4 (EphA4) was a direct target of miR-106b-5p. Results We found that miR-106b-5p levels were increased in melanoma tissue, and high miR-106b-5p expression is an independent risk factor for the overall survival of patients with melanoma. miR-106b-5p is enriched in melanoma cell-secreted exosomes and transferred to melanocytes. Exosomal miR-106b-5p promotes the epithelial-to-mesenchymal transition (EMT), migration, invasion and adhesion of melanocytes. Exosomal miR-106b-5p exerted its role by targeting EphA4 to activate the ERK pathway. We demonstrated that exosomal miR-106b-5p promoted melanoma metastasis in vivo through pulmonary metastasis assay. Conclusions Thus, melanoma cell-secreted exosomal miR-106b-5p may serve as a diagnostic indicator and potential therapeutic target in melanoma patients.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


2020 ◽  
Vol 20 ◽  
Author(s):  
Qionghui Wu ◽  
Haidong Wei ◽  
Wenbo Meng ◽  
Xiaodong Xie ◽  
Zhenchang Zhang ◽  
...  

: Annexin, a calcium-dependent phospholipid binding protein, can affect tumor cell adhesion, proliferation, apoptosis, invasion and metastasis, as well as tumor neovascularization in different ways. Recent studies have shown that annexin exists not only as an intracellular protein in tumor cells, but also in different ways to be secret outside the cell as a “crosstalk” tool for tumor cells and tumor microenvironment, thus playing an important role in the development of tumors, such as participating in epithelial-mesenchymal transition, regulating immune cell behavior, promoting neovascularization and so on. The mechanism of annexin secretion in the form of extracellular vesicles and its specific role is still unclear. This paper summarizes the main role of annexin secreted into the extracellular space in the form of extracellular vesicles in tumorigenesis and drug resistance and analyzes its possible mechanism.


2020 ◽  
Vol 81 (1) ◽  
Author(s):  
Lina A. Aeshra ◽  
Maiada Moustafa ◽  
Mohammed I. Y. Elmallah ◽  
Said Abdelrahman Salih ◽  
Ibrahim Y. Abdel Kader

Author(s):  
Pedro Carriere ◽  
Natalia Calvo ◽  
María Belén Novoa ◽  
Fernanda Lopez-Moncada ◽  
Alexander Riquelme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document