scholarly journals The Role of the Primary Cilium in Sensing Extracellular pH

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 704 ◽  
Author(s):  
Kimberly F. Atkinson ◽  
Rinzhin T. Sherpa ◽  
Surya M. Nauli

Biosensors on the membrane of the vascular endothelium are responsible for sensing mechanical and chemical signals in the blood. Transduction of these stimuli into intracellular signaling cascades regulate cellular processes including ion transport, gene expression, cell proliferation, and/or cell death. The primary cilium is a well-known biosensor of shear stress but its role in sensing extracellular pH change has never been examined. As a cellular extension into the immediate microenvironment, the cilium could be a prospective sensor for changes in pH and regulator of acid response in cells. We aim to test our hypothesis that the primary cilium plays the role of an acid sensor in cells using vascular endothelial and embryonic fibroblast cells as in vitro models. We measure changes in cellular pH using pH-sensitive 2′,7′-biscarboxyethy1-5,6-carboxyfluorescein acetoxy-methylester (BCECF) fluorescence and mitogen-activated protein kinase (MAPK) activity to quantify responses to both extracellular pH (pHo) and intracellular pH (pHi) changes. Our studies show that changes in pHo affect pHi in both wild-type and cilia-less Tg737 cells and that the kinetics of the pHi response are similar in both cells. Acidic pHo or pHi was observed to change the length of primary cilia in wild-type cells while the cilia in Tg737 remained absent. Vascular endothelial cells respond to acidic pH through activation of ERK1/2 and p38-mediated signaling pathways. The cilia-less Tg737 cells exhibit delayed responsiveness to pHo dependent and independent pHi acidification as depicted in the phosphorylation profile of ERK1/2 and p38. Otherwise, intracellular pH homeostatic response to acidic pHo is similar between wild-type and Tg737 cells, indicating that the primary cilia may not be the sole sensor for physiological pH changes. These endothelial cells respond to pH changes with a predominantly K+-dependent pHi recovery mechanism, regardless of ciliary presence or absence.

2021 ◽  
Vol 22 (24) ◽  
pp. 13564
Author(s):  
Vu Thu Thuy Nguyen ◽  
Lena Brücker ◽  
Ann-Kathrin Volz ◽  
Julia C. Baumgärtner ◽  
Malena dos Santos Guilherme ◽  
...  

Neurodegenerative diseases such as Alzheimer’s disease (AD) have long been acknowledged as mere disorders of the central nervous system (CNS). However, in recent years the gut with its autonomous nervous system and the multitude of microbial commensals has come into focus. Changes in gut properties have been described in patients and animal disease models such as altered enzyme secretion or architecture of the enteric nervous system. The underlying cellular mechanisms have so far only been poorly investigated. An important organelle for integrating potentially toxic signals such as the AD characteristic A-beta peptide is the primary cilium. This microtubule-based signaling organelle regulates numerous cellular processes. Even though the role of primary cilia in a variety of developmental and disease processes has recently been recognized, the contribution of defective ciliary signaling to neurodegenerative diseases such as AD, however, has not been investigated in detail so far. The AD mouse model 5xFAD was used to analyze possible changes in gut functionality by organ bath measurement of peristalsis movement. Subsequently, we cultured primary enteric neurons from mutant mice and wild type littermate controls and assessed for cellular pathomechanisms. Neurite mass was quantified within transwell culturing experiments. Using a combination of different markers for the primary cilium, cilia number and length were determined using fluorescence microscopy. 5xFAD mice showed altered gut anatomy, motility, and neurite mass of enteric neurons. Moreover, primary cilia could be demonstrated on the surface of enteric neurons and exhibited an elongated phenotype in 5xFAD mice. In parallel, we observed reduced β-Catenin expression, a key signaling molecule that regulates Wnt signaling, which is regulated in part via ciliary associated mechanisms. Both results could be recapitulated via in vitro treatments of enteric neurons from wild type mice with A-beta. So far, only a few reports on the probable role of primary cilia in AD can be found. Here, we reveal for the first time an architectural altered phenotype of primary cilia in the enteric nervous system of AD model mice, elicited potentially by neurotoxic A-beta. Potential changes on the sub-organelle level—also in CNS-derived neurons—require further investigations.


2006 ◽  
Vol 203 (11) ◽  
pp. 2495-2507 ◽  
Author(s):  
Ganapati H. Mahabeleshwar ◽  
Weiyi Feng ◽  
David R. Phillips ◽  
Tatiana V. Byzova

The process of postnatal angiogenesis plays a crucial role in pathogenesis of numerous diseases, including but not limited to tumor growth/metastasis, diabetic retinopathy, and in tissue remodeling upon injury. However, the molecular events underlying this complex process are not well understood and numerous issues remain controversial, including the regulatory function of integrin receptors. To analyze the role of integrin phosphorylation and signaling in angiogenesis, we generated knock-in mice that express a mutant β3 integrin unable to undergo tyrosine phosphorylation. Two distinct models of pathological angiogenesis revealed that neovascularization is impaired in mutant β3 knock-in mice. In an ex vivo angiogenesis assay, mutant β3 knock-in endothelial cells did not form complete capillaries in response to vascular endothelial growth factor (VEGF) stimulation. At the cellular level, defective tyrosine phosphorylation in mutant β3 knock-in cells resulted in impaired adhesion, spreading, and migration of endothelial cells. At the molecular level, VEGF stimulated complex formation between VEGF receptor-2 and β3 integrin in wild-type but not in mutant β3 knock-in endothelial cells. Moreover, phosphorylation of VEGF receptor-2 was significantly reduced in cells expressing mutant β3 compared to wild type, leading to impaired integrin activation in these cells. These findings provide novel mechanistic insights into the role of integrin–VEGF axis in pathological angiogenesis.


1972 ◽  
Vol 128 (1) ◽  
pp. 139-146 ◽  
Author(s):  
J. P. Ryan ◽  
H. Ryan

1. When yeast oxidizes propan-2-ol in the presence of KCl no uptake of K+occurs. 2. When propionate is added to suspensions containing propan-2-ol, or if the suspensions are bubbled with CO2, a considerable uptake of K+occurs. 3. Maximum K+uptake occurs at a propionate concentration of 2mm. 4. The addition of 20mm-propionate to the suspension lowers the intracellular pH of the yeast from a resting value in the region of 6.2 to approx. 5.6. 5. When K+uptake is measured in the presence of 20mm-propionate, progressive changes in the rate of K+uptake and intracellular pH occur. The optimum rate of K+uptake occurs at an intracellular pH of 5.70. 6. The effect of both intra- and extra-cellular pH on K+–K+exchange was studied and an optimum rate was found at an extracellular pH of 5.35, the corresponding intracellular pH being 6.44. 7. When a Na+-loaded yeast oxidizes propan-2-ol in the presence of KCl, a steady efflux of Na+and influx of K+occurs. The addition of 10mm-propionate to the suspension markedly inhibited the Na+efflux but only slightly decreased the K+influx. 8. The effect of both extra- and intra-cellular pH on Na+efflux was studied with propan-2-ol and with glucose. The results can be best interpreted in terms of intracellular pH changes, and an optimum was obtained at approx. pH6.40.


2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


Author(s):  
Leticia Labat-de-Hoz ◽  
Armando Rubio-Ramos ◽  
Javier Casares-Arias ◽  
Miguel Bernabé-Rubio ◽  
Isabel Correas ◽  
...  

Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the “alternative” route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yan Xiong ◽  
M Julia Scerbo ◽  
Anett Seelig ◽  
Francesco Volta ◽  
Nils O'Brien ◽  
...  

Islet vascularization is essential for intact islet function and glucose homeostasis. We have previously shown that primary cilia directly regulate insulin secretion. However, it remains unclear whether they are also implicated in islet vascularization. At eight weeks, murine Bbs4-/-islets show significantly lower intra-islet capillary density with enlarged diameters. Transplanted Bbs4-/- islets exhibit delayed re-vascularization and reduced vascular fenestration after engraftment, partially impairing vascular permeability and glucose delivery to β-cells. We identified primary cilia on endothelial cells as the underlying cause of this regulation, via the vascular endothelial growth factor-A (VEGF-A)/VEGF receptor 2 (VEGFR2) pathway. In vitro silencing of ciliary genes in endothelial cells disrupts VEGF-A/VEGFR2 internalization and downstream signaling. Consequently, key features of angiogenesis including proliferation and migration are attenuated in human BBS4 silenced endothelial cells. We conclude that endothelial cell primary cilia regulate islet vascularization and vascular barrier function via the VEGF-A/VEGFR2 signaling pathway.


2018 ◽  
Vol 315 (5) ◽  
pp. H1477-H1485 ◽  
Author(s):  
Kimiko Yamamoto ◽  
Hiromi Imamura ◽  
Joji Ando

Vascular endothelial cells (ECs) sense and transduce hemodynamic shear stress into intracellular biochemical signals, and Ca2+ signaling plays a critical role in this mechanotransduction, i.e., ECs release ATP in the caveolae in response to shear stress and, in turn, the released ATP activates P2 purinoceptors, which results in an influx into the cells of extracellular Ca2+. However, the mechanism by which the shear stress evokes ATP release remains unclear. Here, we demonstrated that cellular mitochondria play a critical role in this process. Cultured human pulmonary artery ECs were exposed to controlled levels of shear stress in a flow-loading device, and changes in the mitochondrial ATP levels were examined by real-time imaging using a fluorescence resonance energy transfer-based ATP biosensor. Immediately upon exposure of the cells to flow, mitochondrial ATP levels increased, which was both reversible and dependent on the intensity of shear stress. Inhibitors of the mitochondrial electron transport chain and ATP synthase as well as knockdown of caveolin-1, a major structural protein of the caveolae, abolished the shear stress-induced mitochondrial ATP generation, resulting in the loss of ATP release and influx of Ca2+ into the cells. These results suggest the novel role of mitochondria in transducing shear stress into ATP generation: ATP generation leads to ATP release in the caveolae, triggering purinergic Ca2+ signaling. Thus, exposure of ECs to shear stress seems to activate mitochondrial ATP generation through caveola- or caveolin-1-mediated mechanisms. NEW & NOTEWORTHY The mechanism of how vascular endothelial cells sense shear stress generated by blood flow and transduce it into functional responses remains unclear. Real-time imaging of mitochondrial ATP demonstrated the novel role of endothelial mitochondria as mechanosignaling organelles that are able to transduce shear stress into ATP generation, triggering ATP release and purinoceptor-mediated Ca2+ signaling within the cells.


Sign in / Sign up

Export Citation Format

Share Document