scholarly journals Primary Cilia Structure Is Prolonged in Enteric Neurons of 5xFAD Alzheimer’s Disease Model Mice

2021 ◽  
Vol 22 (24) ◽  
pp. 13564
Author(s):  
Vu Thu Thuy Nguyen ◽  
Lena Brücker ◽  
Ann-Kathrin Volz ◽  
Julia C. Baumgärtner ◽  
Malena dos Santos Guilherme ◽  
...  

Neurodegenerative diseases such as Alzheimer’s disease (AD) have long been acknowledged as mere disorders of the central nervous system (CNS). However, in recent years the gut with its autonomous nervous system and the multitude of microbial commensals has come into focus. Changes in gut properties have been described in patients and animal disease models such as altered enzyme secretion or architecture of the enteric nervous system. The underlying cellular mechanisms have so far only been poorly investigated. An important organelle for integrating potentially toxic signals such as the AD characteristic A-beta peptide is the primary cilium. This microtubule-based signaling organelle regulates numerous cellular processes. Even though the role of primary cilia in a variety of developmental and disease processes has recently been recognized, the contribution of defective ciliary signaling to neurodegenerative diseases such as AD, however, has not been investigated in detail so far. The AD mouse model 5xFAD was used to analyze possible changes in gut functionality by organ bath measurement of peristalsis movement. Subsequently, we cultured primary enteric neurons from mutant mice and wild type littermate controls and assessed for cellular pathomechanisms. Neurite mass was quantified within transwell culturing experiments. Using a combination of different markers for the primary cilium, cilia number and length were determined using fluorescence microscopy. 5xFAD mice showed altered gut anatomy, motility, and neurite mass of enteric neurons. Moreover, primary cilia could be demonstrated on the surface of enteric neurons and exhibited an elongated phenotype in 5xFAD mice. In parallel, we observed reduced β-Catenin expression, a key signaling molecule that regulates Wnt signaling, which is regulated in part via ciliary associated mechanisms. Both results could be recapitulated via in vitro treatments of enteric neurons from wild type mice with A-beta. So far, only a few reports on the probable role of primary cilia in AD can be found. Here, we reveal for the first time an architectural altered phenotype of primary cilia in the enteric nervous system of AD model mice, elicited potentially by neurotoxic A-beta. Potential changes on the sub-organelle level—also in CNS-derived neurons—require further investigations.

2019 ◽  
Vol 110 (1-2) ◽  
pp. 139-146 ◽  
Author(s):  
Claude Knauf ◽  
Anne Abot ◽  
Eve Wemelle ◽  
Patrice D. Cani

The gut-brain axis is of crucial importance for controlling glucose homeostasis. Alteration of this axis promotes the type 2 diabetes (T2D) phenotype (hyperglycaemia, insulin resistance). Recently, a new concept has emerged to demonstrate the crucial role of the enteric nervous system in the control of glycaemia via the hypothalamus. In diabetic patients and mice, modification of enteric neurons activity in the proximal part of the intestine generates a duodenal hyper-contractility that generates an aberrant message from the gut to the brain. In turn, the hypothalamus sends an aberrant efferent message that provokes a state of insulin resistance, which is characteristic of a T2D state. Targeting the enteric nervous system of the duodenum is now recognized as an innovative strategy for treatment of diabetes. By acting in the intestine, bioactive gut molecules that we called “enterosynes” can modulate the function of a specific type of neurons of the enteric nervous system to decrease the contraction of intestinal smooth muscle cells. Here, we focus on the origins of enterosynes (hormones, neurotransmitters, nutrients, microbiota, and immune factors), which could be considered therapeutic factors, and we describe their modes of action on enteric neurons. This unsuspected action of enterosynes is proposed for the treatment of T2D, but it could be applied for other therapeutic solutions that implicate communication between the gut and brain.


2007 ◽  
Vol 293 (2) ◽  
pp. G461-G468 ◽  
Author(s):  
Sean C. McDonagh ◽  
Jenny Lee ◽  
Angelo Izzo ◽  
Patricia L. Brubaker

The intestinal glucagon-like peptides GLP-1 and GLP-2 inhibit intestinal motility, whereas GLP-2 also stimulates growth of the intestinal mucosa. However, the mechanisms of action of these peptides in the intestine remain poorly characterized. To determine the role of the enteric nervous system in the actions of GLP-1 and GLP-2 on the intestine, the glial cell line-derived neurotropic factor family receptor α2 (GFRα2) knockout (KO) mouse was employed. The mice exhibited decreased cholinergic staining, as well as reduced mRNA transcripts for substance P-ergic excitatory motoneurons in the enteric nervous system (ENS) ( P < 0.05). Examination of parameters of intestinal growth (including small and large intestinal weight and small intestinal villus height, crypt depth, and crypt cell proliferation) demonstrated no differences between wild-type and KO mice in either basal or GLP-2-stimulated mucosal growth. Nonetheless, KO mice exhibited reduced numbers of synaptophysin-positive enteroendocrine cells ( P < 0.05), as well as a markedly impaired basal gastrointestinal (GI) transit rate ( P < 0.05). Furthermore, acute administration of GLP-1 and GLP-2 significantly inhibited transit rates in wild-type mice ( P < 0.05–0.01) but had no effect in GFRα2 KO mice. Despite these changes, expression of mRNA transcripts for the GLP receptors was not reduced in the ENS of KO animals, suggesting that GLP-1 and -2 modulate intestinal transit through enhancement of inhibitory input to cholinergic/substance P-ergic excitatory motoneurons. Together, these findings demonstrate a role for GFRα2-expressing enteric neurons in the downstream signaling of the glucagon-like peptides to inhibit GI motility, but not in intestinal growth.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 704 ◽  
Author(s):  
Kimberly F. Atkinson ◽  
Rinzhin T. Sherpa ◽  
Surya M. Nauli

Biosensors on the membrane of the vascular endothelium are responsible for sensing mechanical and chemical signals in the blood. Transduction of these stimuli into intracellular signaling cascades regulate cellular processes including ion transport, gene expression, cell proliferation, and/or cell death. The primary cilium is a well-known biosensor of shear stress but its role in sensing extracellular pH change has never been examined. As a cellular extension into the immediate microenvironment, the cilium could be a prospective sensor for changes in pH and regulator of acid response in cells. We aim to test our hypothesis that the primary cilium plays the role of an acid sensor in cells using vascular endothelial and embryonic fibroblast cells as in vitro models. We measure changes in cellular pH using pH-sensitive 2′,7′-biscarboxyethy1-5,6-carboxyfluorescein acetoxy-methylester (BCECF) fluorescence and mitogen-activated protein kinase (MAPK) activity to quantify responses to both extracellular pH (pHo) and intracellular pH (pHi) changes. Our studies show that changes in pHo affect pHi in both wild-type and cilia-less Tg737 cells and that the kinetics of the pHi response are similar in both cells. Acidic pHo or pHi was observed to change the length of primary cilia in wild-type cells while the cilia in Tg737 remained absent. Vascular endothelial cells respond to acidic pH through activation of ERK1/2 and p38-mediated signaling pathways. The cilia-less Tg737 cells exhibit delayed responsiveness to pHo dependent and independent pHi acidification as depicted in the phosphorylation profile of ERK1/2 and p38. Otherwise, intracellular pH homeostatic response to acidic pHo is similar between wild-type and Tg737 cells, indicating that the primary cilia may not be the sole sensor for physiological pH changes. These endothelial cells respond to pH changes with a predominantly K+-dependent pHi recovery mechanism, regardless of ciliary presence or absence.


2020 ◽  
Vol 318 (2) ◽  
pp. G254-G264
Author(s):  
Jean-Baptiste Cavin ◽  
Hailey Cuddihey ◽  
Wallace K. MacNaughton ◽  
Keith A. Sharkey

The small intestine regulates barrier function to absorb nutrients while avoiding the entry of potentially harmful substances or bacteria. Barrier function is dynamically regulated in part by the enteric nervous system (ENS). The role of the ENS in regulating barrier function in response to luminal nutrients is not well understood. We hypothesize that the ENS regulates intestinal permeability and ion flux in the small intestine in response to luminal nutrients. Segments of jejunum and ileum from mice were mounted in Ussing chambers. Transepithelial electrical resistance (TER), short-circuit current ( Isc), and permeability to 4-kDa FITC-dextran (FD4) were recorded after mucosal stimulation with either glucose, fructose, glutamine (10 mM), or 5% Intralipid. Mucosal lipopolysaccharide (1 mg/mL) was also studied. Enteric neurons were inhibited with tetrodotoxin (TTX; 0.5 μM) or activated with veratridine (10 μM). Enteric glia were inhibited with the connexin‐43 blocker Gap26 (20 μM). Glucose, glutamine, Intralipid, and veratridine acutely modified Isc in the jejunum and ileum, but the effect of nutrients on Isc was insensitive to TTX. TTX, Gap26, and veratridine treatment did not affect baseline TER or permeability. Intralipid acutely decreased permeability to FD4, while LPS increased it. TTX pretreatment abolished the effect of Intralipid and exacerbated the LPS‐induced increase in permeability. Luminal nutrients and enteric nerve activity both affect ion flux in the mouse small intestine acutely but independently of each other. Neither neuronal nor glial activity is required for the maintenance of baseline intestinal permeability; however, neuronal activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. NEW & NOTEWORTHY Luminal nutrients and enteric nerve activity both affect ion transport in the mouse small intestine acutely, but independently of each other. Activation or inhibition of the enteric neurons does not affect intestinal permeability, but enteric neural activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. The enteric nervous system regulates epithelial homeostasis in the small intestine in a time-dependent, region- and stimulus-specific manner.


Development ◽  
1999 ◽  
Vol 126 (12) ◽  
pp. 2785-2797 ◽  
Author(s):  
S. Taraviras ◽  
C.V. Marcos-Gutierrez ◽  
P. Durbec ◽  
H. Jani ◽  
M. Grigoriou ◽  
...  

RET is a member of the receptor tyrosine kinase (RTK) superfamily, which can transduce signalling by glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) in cultured cells. In order to determine whether in addition to being sufficient, RET is also necessary for signalling by these growth factors, we studied the response to GDNF and NTN of primary neuronal cultures (peripheral sensory and central dopaminergic neurons) derived from wild-type and RET-deficient mice. Our experiments show that absence of a functional RET receptor abrogates the biological responses of neuronal cells to both GDNF and NTN. Despite the established role of the RET signal transduction pathway in the development of the mammalian enteric nervous system (ENS), very little is known regarding its cellular mechanism(s) of action. Here, we have studied the effects of GDNF and NTN on cultures of neural crest (NC)-derived cells isolated from the gut of rat embryos. Our findings suggest that GDNF and NTN promote the survival of enteric neurons as well as the survival, proliferation and differentiation of multipotential ENS progenitors present in the gut of E12.5-13.5 rat embryos. However, the effects of these growth factors are stage-specific, since similar ENS cultures established from later stage embryos (E14. 5–15.5), show markedly diminished response to GDNF and NTN. To examine whether the in vitro effects of RET activation reflect the in vivo function(s) of this receptor, the extent of programmed cell death was examined in the gut of wild-type and RET-deficient mouse embryos by TUNEL histochemistry. Our experiments show that a subpopulation of enteric NC undergoes apoptotic cell death specifically in the foregut of embryos lacking the RET receptor. We suggest that normal function of the RET RTK is required in vivo during early stages of ENS histogenesis for the survival of undifferentiated enteric NC and their derivatives.


Author(s):  
Werend Boesmans ◽  
Amelia Nash ◽  
Kinga R. Tasnády ◽  
Wendy Yang ◽  
Lincon A. Stamp ◽  
...  

Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the “support” cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.


2022 ◽  
Vol 15 ◽  
Author(s):  
Kirsten L. Viola ◽  
Maira A. Bicca ◽  
Adrian M. Bebenek ◽  
Daniel L. Kranz ◽  
Vikas Nandwana ◽  
...  

Improvements have been made in the diagnosis of Alzheimer’s disease (AD), manifesting mostly in the development of in vivo imaging methods that allow for the detection of pathological changes in AD by magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Many of these imaging methods, however, use agents that probe amyloid fibrils and plaques–species that do not correlate well with disease progression and are not present at the earliest stages of the disease. Amyloid β oligomers (AβOs), rather, are now widely accepted as the Aβ species most germane to AD onset and progression. Here we report evidence further supporting the role of AβOs as pathological instigators of AD and introduce promising anti-AβO diagnostic probes capable of distinguishing the 5xFAD mouse model from wild type mice by PET and MRI. In a developmental study, Aβ oligomers in 5xFAD mice were found to appear at 3 months of age, just prior to the onset of memory dysfunction, and spread as memory worsened. The increase of AβOs is prominent in the subiculum and correlates with concomitant development of reactive astrocytosis. The impact of these AβOs on memory is in harmony with findings that intraventricular injection of synthetic AβOs into wild type mice induced hippocampal dependent memory dysfunction within 24 h. Compelling support for the conclusion that endogenous AβOs cause memory loss was found in experiments showing that intranasal inoculation of AβO-selective antibodies into 5xFAD mice completely restored memory function, measured 30–40 days post-inoculation. These antibodies, which were modified to give MRI and PET imaging probes, were able to distinguish 5xFAD mice from wild type littermates. These results provide strong support for the role of AβOs in instigating memory loss and salient AD neuropathology, and they demonstrate that AβO selective antibodies have potential both for therapeutics and for diagnostics.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nicola Davis ◽  
Bibiana C. Mota ◽  
Larissa Stead ◽  
Emily O. C. Palmer ◽  
Laura Lombardero ◽  
...  

Abstract Background Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer’s disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. Methods To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. Results Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control. Conclusions Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.


2018 ◽  
Vol 7 (11) ◽  
pp. 461 ◽  
Author(s):  
Young-Kook Kim ◽  
Juhyun Song

Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer’s disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.


Sign in / Sign up

Export Citation Format

Share Document