scholarly journals The Role of Ca2+ Signaling in Aging and Neurodegeneration: Insights from Caenorhabditis elegans Models

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 204 ◽  
Author(s):  
Javier Alvarez ◽  
Pilar Alvarez-Illera ◽  
Paloma García-Casas ◽  
Rosalba I. Fonteriz ◽  
Mayte Montero

Ca2+ is a ubiquitous second messenger that plays an essential role in physiological processes such as muscle contraction, neuronal secretion, and cell proliferation or differentiation. There is ample evidence that the dysregulation of Ca2+ signaling is one of the key events in the development of neurodegenerative processes, an idea called the “calcium hypothesis” of neurodegeneration. Caenorhabditis elegans (C. elegans) is a very good model for the study of aging and neurodegeneration. In fact, many of the signaling pathways involved in longevity were first discovered in this nematode, and many models of neurodegenerative diseases have also been developed therein, either through mutations in the worm genome or by expressing human proteins involved in neurodegeneration (β-amyloid, α-synuclein, polyglutamine, or others) in defined worm tissues. The worm is completely transparent throughout its whole life, which makes it possible to carry out Ca2+ dynamics studies in vivo at any time, by expressing Ca2+ fluorescent probes in defined worm tissues, and even in specific organelles such as mitochondria. This review will summarize the evidence obtained using this model organism to understand the role of Ca2+ signaling in aging and neurodegeneration.

Author(s):  
Merle Marie Nicolai ◽  
Barbara Witt ◽  
Andrea Hartwig ◽  
Tanja Schwerdtle ◽  
Julia Bornhorst

AbstractThe identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening.


2019 ◽  
Author(s):  
Jack W. Rutter ◽  
Tanel Ozdemir ◽  
Leonor M. Quintaneiro ◽  
Geraint Thomas ◽  
Filipe Cabreiro ◽  
...  

AbstractCaenorhabditis elegans has become a key model organism within biology. In particular, the transparent gut, rapid growing time and ability to create a defined gut microbiota make it an ideal candidate organism for understanding and engineering the host microbiota. Here we present the development of an experimental model which can be used to characterise whole-cell bacterial biosensors in vivo. A dual-plasmid sensor system responding to isopropyl β-D-1-thiogalactopyranoside was developed and fully characterised in vitro. Subsequently, we show the sensor was capable of detecting and reporting on changes in the intestinal environment of C. elegans after introducing exogenous inducer into the environment. The protocols presented here may be used for aiding the rational design of engineered bacterial circuits, primarily for diagnostic applications. In addition, the model system may serve to reduce the use of current animal models and aid in the exploration of complex questions within general nematode and host-microbe biology.


Yeast ◽  
2000 ◽  
Vol 1 (3) ◽  
pp. 188-200
Author(s):  
Aner Gurvitz ◽  
Sigrid Langer ◽  
Martin Piskacek ◽  
Barbara Hamilton ◽  
Helmut Ruis ◽  
...  

The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p–SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast β-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a β-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Elizabeth Moreno-Arriola ◽  
Noemí Cárdenas-Rodríguez ◽  
Elvia Coballase-Urrutia ◽  
José Pedraza-Chaverri ◽  
Liliana Carmona-Aparicio ◽  
...  

Caenorhabditis elegansis a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic levelin vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes.C. elegansdisplays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance ofC. elegansas an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.


2021 ◽  
Vol 16 (10) ◽  
pp. 198-206
Author(s):  
Kiran Singh ◽  
Shweta Yadav

Owing to ubiquitous distribution, high abundances and ecological relevance, Caenorhabditis elegans has strong potential interest as barometer of environment and human health. Ecotoxicological methods are used to evaluate the effect of various anthropogenic contaminants on the ecosystems that circumscribe both in-vivo and in-vitro toxicities to explore the pathways and mechanisms of toxicity and to set precise toxicity thresholds. The interest in C. elegans, as a model organism in toxicological studies, has increased over the past few decades. The enticement of C. elegans comes from the ease of metabolically active digestive, sensory, endocrine, neuromuscular, reproductive systems and genetic manipulation along with the ability to fluorescently label neuronal subtypes. The study reviews the competence of Caenorhabditis elegans as a potential model organism in various toxicity assays specifically neurotoxicity and oxidative stress.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Patricia Back ◽  
Bart P. Braeckman ◽  
Filip Matthijssens

Many insights into the mechanisms and signaling pathways underlying aging have resulted from research on the nematodeCaenorhabditis elegans. In this paper, we discuss the recent findings that emerged using this model organism concerning the role of reactive oxygen species (ROS) in the aging process. The accrual of oxidative stress and damage has been the predominant mechanistic explanation for the process of aging for many years, but reviewing the recent studies inC. eleganscalls this theory into question. Thus, it becomes more and more evident that ROS are not merely toxic byproducts of the oxidative metabolism. Rather it seems more likely that tightly controlled concentrations of ROS and fluctuations in redox potential are important mediators of signaling processes. We therefore discuss some theories that explain how redox signaling may be involved in aging and provide some examples of ROS functions and signaling inC. elegansmetabolism. To understand the role of ROS and the redox status in physiology, stress response, development, and aging, there is a rising need for accurate and reversiblein vivodetection. Therefore, we comment on some methods of ROS and redox detection with emphasis on the implementation of genetically encoded biosensors inC. elegans.


2003 ◽  
Vol 370 (3) ◽  
pp. 1047-1054 ◽  
Author(s):  
Juan CADIÑANOS ◽  
Walter K. SCHMIDT ◽  
Antonio FUEYO ◽  
Ignacio VARELA ◽  
Carlos LÓPEZ-OTÍN ◽  
...  

Post-translational processing of proteins such as the Ras GTPases, which contain a C-terminal CaaX motif (where C stands for cysteine, a for aliphatic and X is one of several amino acids), includes prenylation, proteolytic removal of the C-terminal tripeptide and carboxy-methylation of the isoprenyl-cysteine residue. In the present study, we report the presence of two distinct CaaX-proteolytic activities in membrane extracts from Caenorhabditis elegans, which are sensitive to EDTA and Tos-Phe-CH2Cl (tosylphenylalanylchloromethane; ‘TPCK') respectively. A protein similar to the mammalian and yeast farnesylated-proteins converting enzyme-1 (FACE-1)/Ste24p CaaX metalloprotease, encoded by a hypothetical gene (CeFACE-1/C04F12.10) found in C. elegans chromosome I, probably accounts for the EDTA-sensitive activity. An orthologue of FACE-2/Rce1p, the enzyme responsible for the proteolytic maturation of Ras oncoproteins and other prenylated substrates, probably accounts for the Tos-Phe-CH2Cl-sensitive activity, even though the gene for FACE-2/Rce1 has not been previously identified in this model organism. We have identified a previously overlooked gene in C. elegans chromosome V, which codes for a 266-amino-acid protein (CeFACE-2) with 30% sequence identity to human FACE-2/Rce1. We show that both CeFACE-1 and CeFACE-2 have the ability to promote production of the farnesylated yeast pheromone a-factor in vivo and to cleave a farnesylated peptide in vitro. These results indicate that CeFACE-1 and CeFACE-2 are bona fide CaaX proteases and support the evolutionary conservation of this proteolytic system in eukaryotes.


2017 ◽  
Vol 474 (4) ◽  
pp. 493-515 ◽  
Author(s):  
Rossana Zaru ◽  
Michele Magrane ◽  
Claire O'Donovan ◽  

Protein kinases form one of the largest protein families and are found in all species, from viruses to humans. They catalyze the reversible phosphorylation of proteins, often modifying their activity and localization. They are implicated in virtually all cellular processes and are one of the most intensively studied protein families. In recent years, they have become key therapeutic targets in drug development as natural mutations affecting kinase genes are the cause of many diseases. The vast amount of data contained in the primary literature and across a variety of biological data collections highlights the need for a repository where this information is stored in a concise and easily accessible manner. The UniProt Knowledgebase meets this need by providing the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information. Here, we describe the expert curation process for kinases, focusing on the Caenorhabditis elegans kinome. The C. elegans kinome is composed of 438 kinases and almost half of them have been functionally characterized, highlighting that C. elegans is a valuable and versatile model organism to understand the role of kinases in biological processes.


2011 ◽  
Vol 80 (3) ◽  
pp. 1288-1299 ◽  
Author(s):  
Cynthia Portal-Celhay ◽  
Martin J. Blaser

The microbial communities that reside within the intestinal tract in vertebrates are complex and dynamic. In this report, we establish the utility ofCaenorhabditis elegansas a model system for identifying the factors that contribute to bacterial persistence and for host control of gut luminal populations. We found that for N2 worms grown on mixed lawns of bacteria,Salmonella entericaserovar Typhimurium substantially outcompetedEscherichia coli, even whenE. coliwas initially present at 100-fold-higher concentrations. To address whether innate immunity affects the competition, thedaf-2anddaf-16mutants were studied; their total gut bacterial levels reflect overall capacity for colonization, butSalmonellaoutcompetedE. colito an extent similar to wild-type worms. To address the role of virulence properties,SalmonellaΔspi-1Δspi-2was used to compete withE. coli. The net differential was significantly less than that for wild-typeSalmonella; thus,spi-1 spi-2encodesC. eleganscolonization factors. AnE. colistrain with repeatedin vivopassage had an enhanced ability to compete against anin vitro-passedE. colistrain and againstSalmonella. Our data provide evidence of active competition for colonization niches in theC. elegansgut, as determined by bacterial factors and subject toin vivoselection.


2021 ◽  
Vol 14 ◽  
Author(s):  
Lyubov S. Dyshlyuk ◽  
Anastasiya I. Dmitrieva ◽  
Margarita Yu. Drozdova ◽  
Irina S. Milentyeva ◽  
Alexander Yu. Prosekov

: Aging is a process global in nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life, but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances, determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems such as Rattus rattus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, on the increase in its stress resistance and on other markers of aging is also considered. The review showed that the nematode C. elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.


Sign in / Sign up

Export Citation Format

Share Document