scholarly journals CDC-42 Interactions with Par Proteins Are Critical for Proper Patterning in Polarization

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2036 ◽  
Author(s):  
Sungrim Seirin-Lee ◽  
Eamonn A. Gaffney ◽  
Adriana T. Dawes

Many cells rearrange proteins and other components into spatially distinct domains in a process called polarization. This asymmetric patterning is required for a number of biological processes including asymmetric division, cell migration, and embryonic development. Proteins involved in polarization are highly conserved and include members of the Par and Rho protein families. Despite the importance of these proteins in polarization, it is not yet known how they interact and regulate each other to produce the protein localization patterns associated with polarization. In this study, we develop and analyse a biologically based mathematical model of polarization that incorporates interactions between Par and Rho proteins that are consistent with experimental observations of CDC-42. Using minimal network and eFAST sensitivity analyses, we demonstrate that CDC-42 is predicted to reinforce maintenance of anterior PAR protein polarity which in turn feedbacks to maintain CDC-42 polarization, as well as supporting posterior PAR protein polarization maintenance. The mechanisms for polarity maintenance identified by these methods are not sufficient for the generation of polarization in the absence of cortical flow. Additional inhibitory interactions mediated by the posterior Par proteins are predicted to play a role in the generation of Par protein polarity. More generally, these results provide new insights into the role of CDC-42 in polarization and the mutual regulation of key polarity determinants, in addition to providing a foundation for further investigations.

2005 ◽  
Vol 33 (4) ◽  
pp. 623-626 ◽  
Author(s):  
E. Dransart ◽  
A. Morin ◽  
J. Cherfils ◽  
B. Olofsson

rhoGDIs (Rho GDP dissociation inhibitors) are postulated to regulate the activity and the localization of small G-proteins of the Rho family by a shuttling process involving extraction of Rho from donor membranes, formation of inhibitory cytosolic rhoGDI/Rho complexes, and delivery of Rho to target membranes. However, the role of rhoGDIs in site-specific membrane targeting or extraction of Rho is still poorly understood. We investigated here the in vivo functions of two mammalian rhoGDIs: the specific rhoGDI-3 and the well-studied rhoGDI-1 (rhoGDI) after structure-based mutagenesis. We identified two sites in rhoGDIs, forming conserved interactions with their Rho target, whose mutation results in the uncoupling of inhibitory and shuttling functions of rhoGDIs in vivo. Remarkably, these rhoGDI mutants were detected at Rho-induced membrane ruffles or protrusions, where they co-localized with RhoG or Cdc42, probably identifying for the first time the site of extraction of a Rho protein by a rhoGDI in vivo. We propose that these mutations act by modifying the steady-state kinetics of the shuttling process regulated by rhoGDIs, such that transient steps at the cell membranes now become detectable. They should provide valuable tools for future investigations of the dynamics of membrane extraction or delivery of Rho proteins and their regulation by cellular partners.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Dae-Wook Yang ◽  
Jung-Wan Mok ◽  
Stephanie B. Telerman ◽  
Robert Amson ◽  
Adam Telerman ◽  
...  

AbstractRegulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development.


1998 ◽  
Vol 9 (7) ◽  
pp. 1803-1816 ◽  
Author(s):  
Michael C. Brown ◽  
Joseph A. Perrotta ◽  
Christopher E. Turner

We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhiyong Cui ◽  
Yun Tian

Abstract Background The coronavirus disease 2019 (COVID-19) pandemic has struck globally and is exerting a devastating toll on humans. The pandemic has led to calls for widespread vitamin D supplementation in public. However, evidence supporting the role of vitamin D in the COVID-19 pandemic remains controversial. Methods We performed a two-sample Mendelian randomization (MR) analysis to analyze the causal effect of the 25-hydroxyvitamin D [25(OH)D] concentration on COVID-19 susceptibility, severity and hospitalization traits by using summary-level GWAS data. The causal associations were estimated with inverse variance weighted (IVW) with fixed effects (IVW-fixed) and random effects (IVW-random), MR-Egger, weighted edian and MR Robust Adjusted Profile Score (MR.RAPS) methods. We further applied the MR Steiger filtering method, MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test and PhenoScanner tool to check and remove single nucleotide polymorphisms (SNPs) that were horizontally pleiotropic. Results We found no evidence to support the causal associations between the serum 25(OH)D concentration and the risk of COVID-19 susceptibility [IVW-fixed: odds ratio (OR) = 0.9049, 95% confidence interval (CI) 0.8197–0.9988, p = 0.0473], severity (IVW-fixed: OR = 1.0298, 95% CI 0.7699–1.3775, p = 0.8432) and hospitalized traits (IVW-fixed: OR = 1.0713, 95% CI 0.8819–1.3013, p = 0.4878) using outlier removed sets at a Bonferroni-corrected p threshold of 0.0167. Sensitivity analyses did not reveal any sign of horizontal pleiotropy. Conclusions Our MR analysis provided precise evidence that genetically lowered serum 25(OH)D concentrations were not causally associated with COVID-19 susceptibility, severity or hospitalized traits. Our study did not provide evidence assessing the role of vitamin D supplementation during the COVID-19 pandemic. High-quality randomized controlled trials are necessary to explore and define the role of vitamin D supplementation in the prevention and treatment of COVID-19.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Miaomiao Bai ◽  
Dongdong Ti ◽  
Qian Mei ◽  
Jiejie Liu ◽  
Xin Yan ◽  
...  

The human body is a complex structure of cells, which are exposed to many types of stress. Cells must utilize various mechanisms to protect their DNA from damage caused by metabolic and external sources to maintain genomic integrity and homeostasis and to prevent the development of cancer. DNA damage inevitably occurs regardless of physiological or abnormal conditions. In response to DNA damage, signaling pathways are activated to repair the damaged DNA or to induce cell apoptosis. During the process, posttranslational modifications (PTMs) can be used to modulate enzymatic activities and regulate protein stability, protein localization, and protein-protein interactions. Thus, PTMs in DNA repair should be studied. In this review, we will focus on the current understanding of the phosphorylation, poly(ADP-ribosyl)ation, ubiquitination, SUMOylation, acetylation, and methylation of six typical PTMs and summarize PTMs of the key proteins in DNA repair, providing important insight into the role of PTMs in the maintenance of genome stability and contributing to reveal new and selective therapeutic approaches to target cancers.


1999 ◽  
Vol 81 (3) ◽  
pp. 1274-1283 ◽  
Author(s):  
F. K. Skinner ◽  
L. Zhang ◽  
J. L. Perez Velazquez ◽  
P. L. Carlen

Bursting in inhibitory interneuronal networks: a role for gap-junctional coupling. Much work now emphasizes the concept that interneuronal networks play critical roles in generating synchronized, oscillatory behavior. Experimental work has shown that functional inhibitory networks alone can produce synchronized activity, and theoretical work has demonstrated how synchrony could occur in mutually inhibitory networks. Even though gap junctions are known to exist between interneurons, their role is far from clear. We present a mechanism by which synchronized bursting can be produced in a minimal network of mutually inhibitory and gap-junctionally coupled neurons. The bursting relies on the presence of persistent sodium and slowly inactivating potassium currents in the individual neurons. Both GABAA inhibitory currents and gap-junctional coupling are required for stable bursting behavior to be obtained. Typically, the role of gap-junctional coupling is focused on synchronization mechanisms. However, these results suggest that a possible role of gap-junctional coupling may lie in the generation and stabilization of bursting oscillatory behavior.


2015 ◽  
Vol 72 (6) ◽  
pp. 893-901 ◽  
Author(s):  
Brooke E. Penaluna ◽  
Steve F. Railsback ◽  
Jason B. Dunham ◽  
Sherri Johnson ◽  
Robert E. Bilby ◽  
...  

The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.


1990 ◽  
Vol 111 (3) ◽  
pp. 1001-1007 ◽  
Author(s):  
H F Paterson ◽  
A J Self ◽  
M D Garrett ◽  
I Just ◽  
K Aktories ◽  
...  

The rho proteins, p21rho, are ubiquitously expressed guanine nucleotide binding proteins with approximately 30% amino acid homology to p21ras, but their biochemical function is unknown. We show here that microinjection of constitutively activated recombinant rho protein (Val14rho) into subconfluent cells induces dramatic changes in cell morphology: 15-30 min after injection cells adopt a distinct and novel phenotype with a contracted cell body and finger-like processes still adherent to the substratum. Ribosylation of Val14rho with the ADP-ribosyltransferase C3 from clostridium botulinum, before microinjection, renders the protein biologically inactive, but it has no effect on either its intrinsic biochemical properties or on its interaction with the GTPase activating protein, rho GAP. Micro-injection of ribosylated normal rho, on the other hand, has a similar effect of injection of C3 transferase and induces complete rounding up of cells. We also report striking biochemical changes in actin filament organization when contact-inhibited quiescent 3T3 cells are injected with Val14rho protein. The effects induced by activation or inactivation of p21rho described here, suggest that the biological function of this protein is to control some aspect of cytoskeletal organization.


Author(s):  
Susan Griffin

This chapter covers methods for describing how lack of knowledge impacts on the conduct and findings of distributional cost-effectiveness analysis (DCEA). It also sets out methods for describing how different value judgments can alter the findings. It explains why and how to distinguish uncertainty about facts from heterogeneity in values, and the role of each in informing decisions. It shows how the standard tools of uncertainty analysis in economic evaluation—including deterministic and probabilistic sensitivity analysis, and value of information analysis—can be applied to DCEA to provide information about uncertainty in the estimated health distributions and summary measures of equity impact. The chapter also shows how to use deterministic sensitivity analyses to investigate the implications of alternative value judgments and inequality metrics for DCEA findings and recommendations.


2019 ◽  
Vol 20 (8) ◽  
pp. 1924 ◽  
Author(s):  
Gugnoni ◽  
Ciarrocchi

Epithelial–mesenchymal transition (EMT) is a multistep process that allows epithelial cells to acquire mesenchymal properties. Fundamental in the early stages of embryonic development, this process is aberrantly activated in aggressive cancerous cells to gain motility and invasion capacity, thus promoting metastatic phenotypes. For this reason, EMT is a central topic in cancer research and its regulation by a plethora of mechanisms has been reported. Recently, genomic sequencing and functional genomic studies deepened our knowledge on the fundamental regulatory role of noncoding DNA. A large part of the genome is transcribed in an impressive number of noncoding RNAs. Among these, long noncoding RNAs (lncRNAs) have been reported to control several biological processes affecting gene expression at multiple levels from transcription to protein localization and stability. Up to now, more than 8000 lncRNAs were discovered as selectively expressed in cancer cells. Their elevated number and high expression specificity candidate these molecules as a valuable source of biomarkers and potential therapeutic targets. Rising evidence currently highlights a relevant function of lncRNAs on EMT regulation defining a new layer of involvement of these molecules in cancer biology. In this review we aim to summarize the findings on the role of lncRNAs on EMT regulation and to discuss their prospective potential value as biomarkers and therapeutic targets in cancer.


Sign in / Sign up

Export Citation Format

Share Document