scholarly journals Mouse and Fly Sperm Motility Changes Differently under Modelling Microgravity

2021 ◽  
Vol 43 (2) ◽  
pp. 590-604
Author(s):  
Irina V. Ogneva

Sperm motility is essential for the natural fertilization process in most animal species. Despite the fact that evolution took place under conditions of constant gravity, the motility of spermatozoa of insects and mammals under microgravity conditions changes in different ways. In this work, an attempt was made to explain this effect. The sperm motility of the fruit fly Drosophila melanogaster and the mouse was evaluated after exposure to a random positioning machine for 6 h. Sodium fluoride was used to inhibit serine/threonine phosphatases, sodium orthovanadate was used to inhibit tyrosine phosphatases, and 6-(dimethylamino)purine was used to inhibit protein kinases. The results obtained indicate that simulated microgravity leads to an increase in the speed of movement of fly spermatozoa by 30% (p < 0.05), and this effect is blocked by sodium fluoride. In contrast, a 29% (p < 0.05) decrease in the speed of movement of mouse spermatozoa under simulated microgravity is prevented by 6-(dimethylamino)purine. Moreover, after 6 h of exposure, the content of tubulin cytoskeleton and actin proteins remains at the control level in the spermatozoa of flies and mice. However, the content of the actin-binding protein alpha-actinin in fly sperm decreases by 29% (p < 0.05), while in mouse sperm, the relative content of alpha-actinin1 increases by 94% (p < 0.05) and alpha-actinin4 by 121% (p < 0.05) relative to the control, as determined by 6 simulated microgravity tests. It can be assumed that the effect of simulated microgravity on the motility of mammalian spermatozoa is mediated through the regulation of phosphorylation and that of insects through the regulation of dephosphorylation of motor proteins; moreover, the development of a response to changes in external mechanical conditions has a different time scale.

Author(s):  
Francesca Sardi ◽  
Martina Rossi ◽  
Sara Ferrando ◽  
Maria Angela Masini ◽  
Federico Biggi ◽  
...  

Compounds known as chemical mediators, including acetylcholine, have been found not only in humans and animals, but also in living organisms, like protozoa, which lack nervous system. In Paramecium primaurelia has been described a cholinergic system, which is proven to play an important role in cell-cell interactions during its developmental cycle. In our work we investigated the effects of exposure to simulated microgravity (3D Random Positioning Machine, 56 rpm, 10-6 g) on the cholinesterase activity of the eukaryote unicellular-organism alternative-model P. primaurelia. Our results show that the exposure of P. primaurelia to microgravity for 6 h, 24 h, 48 h affects the localization and the amount of cholinesterase activity compared to cells grown under Earth gravity conditions (1 g). However, these effects are transient since P. primaurelia restores its normal cholinesterase activity after 72 h under microgravity conditions, as well as cells exposed up to 72 h to microgravity and then placed under terrestrial gravity for 48 h.


2020 ◽  
Vol 22 (1) ◽  
pp. 7
Author(s):  
P. S. Shinde ◽  
L. D. Adhav ◽  
R. M. Pise ◽  
S. S. Jagtap

In the present investigation, the cadmium sulphide (CdS) nanoparticles are synthesized in the normal gravity i.e. 1 g (called as control) and in simulated microgravity (called as SMG). The SMG was created by using an instrument called Random Positioning Machine (RPM). Cadmium sulfide nanoparticles were synthesized by using standard chemical method under normal gravity (1 g) and simulated microgravity conditions. The synthesized CdS nanoparticles were characterized by Ultraviolet Visible spectroscopy, Fourier Transform Infrared Ray spectroscopy (FTIR), X-ray diffraction (XRD). The UV-visible absorption spectrum of CdS nanoparticle solution showed a distinct absorption peak at 472.19 nm in control and 458.26 nm in SMG. The band gap calculated from the absorption edge for microgravity sample was 2.71 eV and for control sample was 2.63 eV.  The crystalline size of CdS nanoparticles synthesised in control and Micro-g was determined by XRD. Obtained results showed smaller the particle size in microgravity sample (10.78 nm) as compared to control sample (13.89 nm).


2015 ◽  
Vol 28 (3) ◽  
pp. 247-260 ◽  
Author(s):  
Elisabeth Warnke ◽  
Sascha Kopp ◽  
Markus Wehland ◽  
Ruth Hemmersbach ◽  
Johann Bauer ◽  
...  

2020 ◽  
Vol 21 (14) ◽  
pp. 5054 ◽  
Author(s):  
Irina V. Ogneva ◽  
Maria A. Usik ◽  
Nikolay S. Biryukov ◽  
Yuliya S. Zhdankina

For deep space exploration, reproductive health must be maintained to preserve the species. However, the mechanisms underlying the effect of changes in gravity on male germ cells remain poorly understood. The aim of this study was to determine the effect of simulated micro- and hypergravity on mouse sperm motility and the mechanisms of this change. For 1, 3 and 6 h, mouse sperm samples isolated from the caudal epididymis were subjected to simulated microgravity using a random position machine and 2g hypergravity using a centrifuge. The experimental samples were compared with static and dynamic controls. The sperm motility and the percentage of motile sperm were determined using microscopy and video analysis, cell respiration was determined by polarography, the protein content was assessed by Western blotting and the mRNA levels were determined using qRT-PCR. The results indicated that hypergravity conditions led to more significant changes than simulated microgravity conditions: after 1 h, the speed of sperm movement decreased, and after 3 h, the number of motile cells began to decrease. Under the microgravity model, the speed of movement did not change, but the motile spermatozoa decreased after 6 h of exposure. These changes are likely associated with a change in the structure of the microtubule cytoskeleton, and changes in the energy supply are an adaptive reaction to changes in sperm motility.


2005 ◽  
Vol 288 (6) ◽  
pp. C1211-C1221 ◽  
Author(s):  
Steven J. Pardo ◽  
Mamta J. Patel ◽  
Michelle C. Sykes ◽  
Manu O. Platt ◽  
Nolan L. Boyd ◽  
...  

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


2020 ◽  
Vol 21 (23) ◽  
pp. 8908
Author(s):  
Alessandra Cazzaniga ◽  
Fabian Ille ◽  
Simon Wuest ◽  
Carsten Haack ◽  
Adrian Koller ◽  
...  

We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.


2019 ◽  
Vol 20 (8) ◽  
pp. 1892 ◽  
Author(s):  
Caterina Morabito ◽  
Paola Lanuti ◽  
Giusy A. Caprara ◽  
Marco Marchisio ◽  
Mariano Bizzarri ◽  
...  

The presence of microgravity conditions deeply affects the human body functions at the systemic, organ and cellular levels. This study aimed to investigate the effects induced by simulated-microgravity on non-stimulated Jurkat lymphocytes, an immune cell phenotype considered as a biosensor of the body responses, in order to depict at the cellular level the effects of such a peculiar condition. Jurkat cells were grown at 1 g or on random positioning machine simulating microgravity. On these cells we performed: morphological, cell cycle and proliferation analyses using cytofluorimetric and staining protocols—intracellular Ca2+, reactive oxygen species (ROS), mitochondria membrane potential and O2− measurements using fluorescent probes—aconitase and mitochondria activity, glucose and lactate content using colorimetric assays. After the first exposure days, the cells showed a more homogeneous roundish shape, an increased proliferation rate, metabolic and detoxifying activity resulted in decreased intracellular Ca2+ and ROS. In the late exposure time, the cells adapted to the new environmental condition. Our non-activated proliferating Jurkat cells, even if responsive to altered external forces, adapted to the new environmental condition showing a healthy status. In order to define the cellular mechanism(s) triggered by microgravity, developing standardized experimental approaches and controlled cell culture and simulator conditions is strongly recommended.


2020 ◽  
Vol 295 (49) ◽  
pp. 16840-16851
Author(s):  
Liwen Liang ◽  
Huili Li ◽  
Ting Cao ◽  
Lina Qu ◽  
Lulu Zhang ◽  
...  

The human cardiovascular system has adapted to function optimally in Earth's 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.


Sign in / Sign up

Export Citation Format

Share Document