scholarly journals Concrete Overstrength: Assessment of Field Strength Seeking Insights for Overdesign Optimization

CivilEng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 51-65
Author(s):  
Rodrigo Antunes

This study investigates the high contents of cementitious materials in Portland cement concrete and assesses the required (f’cr) and actual (σ) compressive strength of concrete specimens. A linear optimization technique identifies the required binder content to reach f’cr. Standard specifications have required concrete overdesign (OD) for decades, but few studies have evaluated the actual magnitude of OD from field data. The compressive strength of 958 cylinders prepared in the field represented 8200 m3 of ready-mixed concrete with 300 and 450 kg/m3 of cementitious are analyzed. The actual OD appears to be 7 to 21% higher than required. The required 28-day compressive strength of concrete was achieved in less than seven days. Therefore, the content of the cementitious materials could be reduced by 6 and 17% so that concrete could reach f’cr without cementitious overconsumption. Reducing cementitious content is recommended to improve construction quality and optimize resource utilization. Among the main reasons for this recommendation are the estimated substantial long-term savings, increased concrete durability and more rational use of natural resources required to build the structures.

2021 ◽  
Vol 11 (2) ◽  
pp. 7041-7046
Author(s):  
M. O. Eloget ◽  
S. O. Abuodha ◽  
M. M. O. Winja

The characteristics of concrete are influenced by the ratio of water to cementitious materials (w/c) used in the mixture. An increase in paste quality will yield higher compressive and flexural strength, lower permeability, increased resistance to weathering, improve the bond between concrete and reinforcement, reduced volume change from drying and wetting, and reduced shrinkage cracking tendencies. Admixtures are used to improve the properties of concrete or mortar. The current study investigates the effect of Sisal Juice Extract (SJE) as an admixture on concrete durability. SJE contains unrefined minerals which can be used as organic retarders to increase the rate of strength development at an early age. A total of 84 concrete cubes were produced in 7 sets of 12 samples each. One set was the control mix which had zero SJE content. The remaining sets had varying dosages of SJ namely 5%, 10%, 15%, 20%, 25%, and 30%. Twelve beam specimens were also cast and subjected to the three-point flexural test. To establish the effect on strength of concrete, compressive strength was tested at 7, 14, 28, and 56 days while flexural strength was tested at 28 days. The highest compressive strength was achieved at 5% dosage beyond which a decrease in strength occurred for all the higher dosages.


2020 ◽  
Author(s):  
Dennis S. Tavares ◽  
David A. Ribeiro ◽  
Tadayuki Y. Junior ◽  
Wilian S. Lacerda ◽  
Eduardo T. Tiradentes ◽  
...  

Concrete is one of the most widely used building materials, being composed of different components with different properties, which makes the task of dosing and strength determination complex. Artificial Neural Networks is a tool that has the ability to generalize and learn from previous experiences that are provided by a previously built database. This work aims the implementation of RNA in determining the compressive strength of concrete of various ages. The input data is the material quantities and the output is the compressive strength. The results obtained are promising and advantageous from the point of civil engineering, since the average correlation coefficient obtained was 0.96559, with the neural network showing agility and a low error rate in the inserted context, with an efficiency of approximately 95%.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2016 ◽  
Vol 680 ◽  
pp. 392-397
Author(s):  
Zhu Ding ◽  
Meng Xi Dai ◽  
Can Lu ◽  
Ming Jie Zhang ◽  
Peng Cui

Magnesium phosphate cements (MPC) had been used as repair materials for deteriorated Portland cement concrete structures. In this paper a new MPC was prepared and the basic properties including workability and compressive strength were tested. The acid attack resistance of MPC was investigated by immersing the MPC mortars in solutions at pH 3, 5, and 7, for 14d, 28d and 60d respectively. The compressive strength of MPC mortars after acid attack was tested and the microstructure of MPC were examined. The results showed that the compressive strength of MPC decreased after immersion in acid solution for 14d and 28d, however the strength of MPC with suitable materials mixture can recovered again after 60d immersion. The results indicated MPC has high acid attack resistance in static acid solution. The behavior of MPC in flowing acid solutions is need to be studied further.


2019 ◽  
Vol 26 (1) ◽  
pp. 449-464 ◽  
Author(s):  
Mifeng Gou ◽  
Longfei Zhou ◽  
Nathalene Wei Ying Then

AbstractOne of the advantages of cement and the cement concrete industry in sustainability is the ability to utilize large amounts of industrial solid wastes such as fly ash and ground granulated blast furnace slag. Tailings are solid wastes of the ore beneficiation process in the extractive industry and are available in huge amounts in some countries. This paper reviews the potential utilization of tailings as a replacement for fine aggregates, as supplementary cementitious materials (SCMs) in mortar or concrete, and in the production of cement clinker. It was shown in previous research that while tailings had been used as a replacement for both fine aggregate and cement, the workability of mortar or concrete reduced. Also, at a constant water to cement ratio, the compressive strength of concrete increased with the tailings as fine aggregate. However, the compressive strength of concrete decreased as the replacement content of the tailings as SCMs increased, even whentailings were ground into smaller particles. Not much research has been dedicated to the durability of concrete with tailings, but it is beneficial for heavy metals in tailings to stabilize/solidify in concrete. The clinker can be produced by using the tailings, even if the tailings have a low SiO2 content. As a result, the utilization of tailings in cement and concrete will be good for the environment both in the solid waste processing and virgin materials using in the construction industry.


2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2013 ◽  
Vol 710 ◽  
pp. 362-366
Author(s):  
Hao Yu ◽  
Jian Meng Li ◽  
Huang Xin

In the salt lake areas in China, the ordinary cement concrete can be corroded by the salt in the saline soil seriously, and the application of ordinary portland cement concrete in this area is impeded. Therfore, some new cementitious materials which has high durability should be searched in order to be used in the underground engineering in saline soil areas. In this study, the sulfoaluminate cement is immersed into the salt solution that has high concentration Mg2+, Cl-, SO42-, and the complex solution of them. The corrosion resistance performance of sulfoaluminate cement against high concentration salt solution is tested. The results indicate that Sulfoaluminate cement has perfect durability against sulfate corrosion whose concentration is in the scope of this test. Sulfoaluminate cement can not be corroded by MgCl2 solution when MgCl2 solution concentration is lower than degree 3; but when the concentration of MgCl2 solution reaches degree 4, MgCl2 solution could corrode the sulfoaluminate cement seriously. The corrosion of the specimens immersed in MgCl2 solution whose concentration is degree 4 is caused by the composite action of Mg2+ and Cl-.


2014 ◽  
Vol 1054 ◽  
pp. 154-161 ◽  
Author(s):  
Wojciech Kubissa ◽  
Barbara Pacewska ◽  
Iwona Wilińska

The results of research of mechanical properties and selected other characteristics influencing durability of cement concretes containing cement substitutes were presented. Cement concretes performed with conventional fly ash, fluidised fly ash and their mixture were investigated. The obtained results were compared with findings registered for two types of concrete performed without cement replacements and with cement concrete containing silica fume. The results have shown that cement concrete with predetermined 28-day compressive strength of about 50 MPa and good workability may be obtained using different cement replacements. Generally, these cement concretes exhibited also favorable properties related to concrete durability, i.e. low permeability and sorptivity, and significant reduction of chloride migration coefficient. Favourable results were obtained for cement concrete containing mix of conventional and fluidised fly ashes: good workability, compressive strength after 28th day exceeding 50 MPa, low permeability of water, and low sorptivity, as well as low coefficient of chloride migration. These features were similar as for cement concrete containing silica fume.


Sign in / Sign up

Export Citation Format

Share Document