scholarly journals Future Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine Learning

Climate ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 28 ◽  
Author(s):  
Marco Gianinetto ◽  
Martina Aiello ◽  
Renata Vezzoli ◽  
Francesco Niccolò Polinelli ◽  
Maria Cristina Rulli ◽  
...  

Erosion is one of the major threats listed in the Soil Thematic Strategy of the European Commission and the Alps are one of the most vulnerable ecosystems, with one of the highest erosion rates of the whole European Union. This is the first study investigating the future scenarios of soil erosion in Val Camonica and Lake Iseo, which is one of the largest valleys of the central Italian Alps, considering both climate change and land cover transformations. Simulations were done with the Dynamic Revised Universal Soil Loss Equation (D-RUSLE) model, which is able to account also for snow cover and land cover dynamics simulated with automatic machine learning. Results confirm that land cover projections, usually ignored in these studies, might have a significant impact on the estimates of future soil erosion. Our scenario analysis for 2100 shows that if the mean annual precipitation does not change significantly and temperature increases no more than 1.5–2.0 °C, then the erosion rate will decrease by 67% for about half of the study area. At the other extreme, if the mean annual precipitation increases by more than 8% and the temperature increases by more than 4.0 °C, then about three-quarters of the study area increases the erosion rate by 92%. What clearly emerges from the study is that regions with higher erosion anomalies (positive and negative) are expected to expand in the future, and their patterns will be modulated by future land transformations.

2020 ◽  
Vol 15 (2) ◽  
pp. 20
Author(s):  
Elvi Roza Syofyan ◽  
Bambang Istijono ◽  
Amrizal Saidi ◽  
Revalin Herdianto

Batang Kuranji Watershed is one of the region river at Indragiri - Akuaman with a total area of Watershed 224.7 km2 consisting of Batang Sungai Sapiah Sub Watershed, Batang Danau Limau Manih Sub Watershed, Batang Sungkai Sub Watershed, Batang Bukik Tindawan Sub Watershed and Batang Padang Janiah Sub Watershed. Batang Kuranji flows from upstream of the Bukit Barisan with the highest elevation + 1,605 meters above sea level at the peak of Bukit Tinjau Laut and empties into the Padang beach with a main river length of ± 32.41. DEM has an influence on the results of land erosion by affecting the slope accuracy. The higher the DEM resolution, the more precise the results of the soil erosion simulation. With the Musle method the rate of erosion occurs in the Batang Kuranji watershed, with DEM data of 8m and land cover in 2017, an erosion rate of 23.91 tons / ha / year is classified in hazard class II (light), DEM data of 30m erosion rate is 7. 70 tons / ha / year are classified in hazard class I (very mild), with DEM data of 90m erosion rate of 4.54 tons / ha / year classified in hazard I class (very light). It can be seen that the higher the DEM resolution, the more accurate the erosion rate calculation in the watershed.


2022 ◽  
pp. 92-111
Author(s):  
Bhavya Kavitha Dwarapureddi ◽  
Swathi Dash ◽  
Aman Raj ◽  
Nihanth Soury Garika ◽  
Ankit Kumar ◽  
...  

Climatic conditions, precise relief features, variations of soil, flora cover, socio-economic conditions together lead to torrential flood waves as a result of current soil erosion processes. Erosion and torrential floods are aggravated due to over exploitation of agricultural and forest land along with urbanization. Effects of soil erosion include nutrient loss, land use changes, reduced productivity, siltation of water bodies, among other effects like affecting livelihood of marginal communities dependent on agriculture globally and public health. Nearly 11 million km2 of soil is impacted by erosion precisely by water. Other factors like intensified agriculture and climate change contribute to and aggravate the erosion rate. Contemporary torrential floods are characterized by their increased destruction and frequency unlike the pre-development periods when their occurrence was rare. The focus of this review is to compile and aid as a data base for understanding methods of preventing erosion of soil and torrential floods as put forth by various researchers.


2019 ◽  
Vol 11 (24) ◽  
pp. 7053 ◽  
Author(s):  
Carina Colman ◽  
Paulo Oliveira ◽  
André Almagro ◽  
Britaldo Soares-Filho ◽  
Dulce Rodrigues

The Pantanal biome integrates the lowlands of the Upper Paraguay Basin (UPB), which is hydrologically connected to the biomes of the Cerrado and Amazon (the highlands of the UPB). The effects of recent land-cover and land-use (LCLU) changes in the highlands, combined with climate change, are still poorly understood in this region. Here, we investigate the effects of soil erosion in the Brazilian Pantanal under climate and LCLU changes by combining different scenarios of projected rainfall erosivity and land-cover management. We compute the average annual soil erosion for the baseline (2012) and projected scenarios for 2020, 2035, and 2050. For the worst scenario, we noted an increase in soil loss of up to 100% from 2012 to 2050, associated with cropland expansion in some parts of the highlands. Furthermore, for the same period, our results indicated an increase of 20 to 40% in soil loss in parts of the Pantanal biome, which was associated with farmland increase (mainly for livestock) in the lowlands. Therefore, to ensure water, food, energy, and ecosystem service security over the next decades in the whole UPB, robust and comprehensive planning measures need to be developed, especially for the most impacted areas found in our study.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 881 ◽  
Author(s):  
Richard Ampomah ◽  
Hossein Hosseiny ◽  
Lan Zhang ◽  
Virginia Smith ◽  
Kristin Sample-Lord

Urbanization typically results in increased imperviousness which alters suspended sediment yield and impacts geomorphic and ecological processes within urban streams. Therefore, there is an increasing interest in the ability to predict suspended sediment yield. This study assesses the combined impact of urban development and increased precipitation on suspended sediment yield in the Cuyahoga River using statistical modeling. Historical satellite-based land-cover data was combined with precipitation and suspended sediment yield data to create a Multiple Linear Regression (MLR) model for the Cuyahoga watershed. An R2 value of 0.71 was obtained for the comparison between the observed and predicted results based on limited land-use and land-cover data. The model also shows that every 1 mm increase in the mean annual precipitation has the potential to increase the mean annual suspended sediment yield by 860 tons/day. Further, a 1 km2 increase in developed land area has the potential to increase mean annual suspended sediment yield by 0.9 tons/day. The framework proposed in this study provides decision makers with a measure for assessing the potential impacts of future development and climate alteration on water quality in the watershed and implications for stream stability, dam and flood management, and in-stream and near-stream infrastructure life.


2020 ◽  
Author(s):  
Huilan Zhang

<p>Climate change and various human activities have resulted in noticeable changes in watershed hydrological and soil erosion regimes. In this study, a comprehensive investigation was conducted to distinguish between the effects of climate variables and those of land use and land cover change (LUCC) variables on runoff and sediment discharge in a watershed located at upper reaches of the Yangtze River. Statistical analysis results revealed significant and slight increasing trends in runoff and sediment discharge, respectively. Abrupt changes occurred in 1974 and 1995, which divided the entire time series into a decrease–increase–decrease tendency pattern; this pattern was the response to climate changes and the Reforestation and Returning Farmland to Forest project in China. In addition, redundancy analysis was used for partition statistical analyses, and the contributions of climate change and LUCC to runoff and sediment discharge were at the ratio of 4:1. Since 1990, the effect of LUCC has increased notably and its relationship with hydrological variables changed from positive to negative in approximately 1995. Finally, simulations performed using the distributed Basic Pollution Calculation Center (BPCC) model confirmed that climate and LUCC variables reduced the runoff depth and sediment load between 1980 and 2003. The contributions of climate fluctuation and LUCC to runoff depth were at the ratio of 5:1, and those to sediment load were at the ratio of 3:1, which exhibited the dominant role of climate change and the high sensitivity of sediment load to human interference. Overall, the results of distributed hydrological modeling were consistent with those of statistical analyses. The results provided detailed information and explained the mechanics underlying hydrological processes and soil erosion.</p><p> </p>


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mihretab G. Ghebrezgabher ◽  
Taibao Yang ◽  
Xuemei Yang

Climate change due to global warming is a world concern, particularly in Africa. In this study, precipitation and temperature variables are taken as a proxy to assess and quantify the long-term climate change and drought in the Horn of Africa (HOA) (1930–2014). We adapted a simple linear regression and interpolation to analyze, respectively, the trend and spatial distribution of the mean annual precipitation and temperature. In addition, standardized precipitation evapotranspiration index (SPEI) was applied to evaluate the drought condition of the HOA. The results revealed that statistically the trend of precipitation decreased insignificantly; the trend of temperature was observed to drop very significantly between 1930 and 1969, but it was dramatically elevated very significantly from 1970 to 2014. The SPEI showed that the HOA experienced from mild to moderate drought throughout the study period with severe to extreme drought in some regions, particularly in 1943, 1984, 1991, and 2009. The drought was a very serious environmental problem in the HOA in the last 85 years. Thus, an immediate action is required to tackle drought and hence poverty and famine in the HOA.


Author(s):  
Muhammad Ikhsan ◽  
Meylis Safriani ◽  
Cut Suciatina Silvia ◽  
Refvina Dari

This study aims to predict the occurrence of erosion in the downstream Krueng Meureubo watershed, West Aceh Regency. Erosion is the loss of topsoil due to rain splash which is analyzed as a factor of rain erosivity, but the occurrence of erosion is not necessarily calculated by the occurrence of rain alone, but many other factors, such as soil erodibility, slope and length of land, land cover and the presence or absence of land conservation efforts. the. The Krueng Meurebo watershed shows a large sediment transport, with an indication that the river is getting shallower caused by sediment deposition at the riverbed, this sediment comes from sediment carried through the process of soil erosion. The method used in analyzing the occurrence of soil erosion in this study is the USLE method and uses a Geographic Information System (GIS). The results obtained are the distribution of erosion rate values in 228 polygons, with the largest erosion rate value occurring in polygon 1 with an erosion rate of 8495.308 tons/ha/year. The smallest erosion rate occurs in polygons 30, 34, 35, 179, and 180, with an erosion rate of 0 meaning that there is no land erosion event, which occurs in organosol and glehumus and regosol soil types, land cover is settlements and water bodies. It is concluded that the occurrence of erosion in a land is very dependent on the type of soil and the type of land cover. It is recommended for land with large erosion events to take serious land conservation actions so that erosion events can be minimized and do not occur continuously which of course can cause the watershed to become critical. Conservation efforts can be carried out in various ways, one of which is by vegetative means using plants that can reduce the rate of soil erosion.


2019 ◽  
Vol 11 (20) ◽  
pp. 5790
Author(s):  
Junju Zhou ◽  
Dongxiang Xue ◽  
Li Lei ◽  
Lanying Wang ◽  
Guoshuang Zhong ◽  
...  

Soil, as the largest organic carbon pool of terrestrial ecosystem, plays a significant role in regulating the global carbon cycle, atmospheric carbon dioxide (CO2) levels, and global climate change. It is of great significance to scientifically understand the change rule and influence mechanism of soil organic carbon (SOC) to further understand the "source–sink" transformation of SOC and its influence on climate change. In this paper, the spatiotemporal distribution characteristics and influencing mechanism of SOC were analyzed by means of field investigation and laboratory analysis and the measured data in the Eastern Qilian Mountains. The results showed that the average SOC content of 0–50 cm was 35.74 ± 4.15 g/kg and the range of coefficients of variation (CV) between 48.84% and 75.84%, which suggested that the SOC content exhibited moderate heterogeneity at each soil layer of the Eastern Qilian Mountains. In four land cover types, the SOC content of forestland was the highest, followed by alpine meadow, grassland, and wilderness, which presented surface enrichment, and there was a decreasing trend with the soil depth. From the perspective of seasonal dynamics, there was a uniform pattern of SOC content in different land cover types, shown to be the highest in winter, followed by autumn, spring, and summer, and with the biggest difference between winter and summer appearing in the surface layer. At the same time, our study suggested that the SOC content of different land cover types was closely related to aboveground biomass and negatively related to both the mean monthly temperature and the mean monthly precipitation. Therefore, the distribution and variation of SOC was the result of a combination of climate, vegetation, and other factors.


2020 ◽  
Vol 10 (15) ◽  
pp. 5091
Author(s):  
Chuong Van Huynh ◽  
Tung Gia Pham ◽  
Tan Quang Nguyen ◽  
Linh Hoang Khanh Nguyen ◽  
Phuong Thi Tran ◽  
...  

Soil erosion is a considerable concern in the upland areas of Central Vietnam. This situation is most serious in regions, where the terrain is sloped and subjected to heavy rainfall. Our research was conducted in a mountainous area, belonging to Central Vietnam, the area of Song Kon commune in the Dong Giang district. The objective of this study is first to estimate the impact of soil erosion risk in these areas, and second to assess the capacity of farming systems which are based on indigenous knowledge (IK) to respond to soil erosion. Our data were collected by Participatory Rural Appraisal (PRA) and processed using Geographical Information System (GIS) methods. We then interpreted this research using the Universal Soil Loss Equation (USLE) in order to calculate the soil erosion rate. The Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) were also used as measurements to compare the difference of land surface covers between different farming systems. The results showed that the lowest soil erosion rate was found in the narrow valley regions, which are populated by both agricultural and residential areas. On the other hand, soil erosion was extremely high in the more northerly quadrant of our research area. Our findings also indicate that local farmers are highly aware of soil erosion, which has positively influenced the adoption of adaptation measures (AMs) in their agricultural activities. The most common AMs are as follows: changes in cropping patterns, the adjustments of their planting calendars, the use of native varieties, and intercropping methods. These AMs are mediated by the cultural observances of the local ethnic minority peoples in relation to their IK. We have concluded that when farmers apply IK in their farming systems, the soil erosion rate tends to decrease as compared with non-indigenous knowledge (NIK) practices. We hope to bring a better understanding of the processes that shape farmers’ AMs and thereby to develop well-targeted adaptation policies that can then be applied at the local level. Our findings may be instrumental in future adaptation planning and policies in regard to climate change, and that they will help to increase awareness not only in matters of the soil erosion but also in other interconnected aspects of climate change in these areas.


2021 ◽  
Vol 164 (1-2) ◽  
Author(s):  
Bano Mehdi ◽  
Julie Dekens ◽  
Mathew Herrnegger

AbstractThe Ruhezamyenda catchment in Uganda includes a unique lake, Lake Bunyonyi, and is threatened by increasing social and environmental pressures. The COSERO hydrological model was used to assess the impact of climate change on future surface runoff and evapotranspiration in the Lake Bunyonyi catchment (381 km2). The model was forced with an ensemble of CMIP5 global climate model (GCM) simulations for the mid-term future (2041–2070) and for the far future (2071–2100), each with RCP4.5 and RCP8.5. In the Ruhezamyenda catchment, compared to 1971–2000, the median of all GCMs (for both RCPs) showed the mean monthly air temperature to increase by approximately 1.5 to 3.0 °C in the mid-term future and by roughly 2.0 to 4.5 °C in the far future. The mean annual precipitation is generally projected to increase, with future changes between − 25 and + 75% (RCP8.5). AET in the Lake Bunyonyi catchment was simulated to increase for the future by approximately + 8 mm/month in the median of all GCMs for RCP8.5 for the far future. The runoff for future periods showed much uncertainty, but with an overall increasing trend. A combination of no-regrets adaptation options in the five categories of: governance; communication and capacity development; water, soil, land management and livelihoods improvement; data management; and research, was identified and validated with stakeholders, who also identified additional adaptation actions based on the model results. This study contributes to improving scientific knowledge on the impacts of climate change on water resources in Uganda with the purpose to support adaptation.


Sign in / Sign up

Export Citation Format

Share Document