scholarly journals Hydrothermal Degradation of Biobased Poly(butylene succinate)/Nanofibrillated Cellulose Composites

2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Olesja Starkova ◽  
Oskars Platnieks ◽  
Alisa Sabalina ◽  
Sergejs Gaidukovs

Biobased polymers and composites have gained increased global attention due to their abundance, renewability, and biodegradability. Natural fillers such as cellulose-based fillers improve the mechanical properties of biopolymers, extending their application range, while maintaining the eco-friendly characteristics of the materials. Mowing towards engineering applications, requirements imposed on materials’ durability with regard to their environmental impact and high performance is necessary. Variations of ambient humidity and temperature could essentially reduce the service lifetime of biobased polymer composites. This study is focused on the hydrothermal degradation of poly(butylene succinate) (PBS) filled with nanofibrillated cellulose (NFC) by up to 50 wt.% aimed at identifying the most efficient PBS/NFC composition, while maintaining a reasonable balance between the reinforcement effect and accelerated degradation that is inherent for most natural fillers. Water absorption and its effect on the structure, thermal, mechanical, and thermomechanical properties were studied. High reinforcement and adhesion efficiency is obtained for PBS/NFC composites and their properties are reasonably retained after hydrothermal ageing. Their water absorption capacity and diffusivity increased significantly with the NFC content in PBS. The degradation of the mechanical properties occurs to a greater extent with an increased NFC content in the polymer matrix. PBS, filled with 20 wt.% of NFC, is identified as the most efficient composition, for which the negative environmental degradation effects are counterbalanced by the positive reinforcement effect.

2021 ◽  
Vol 1192 (1) ◽  
pp. 012002
Author(s):  
M. Mat Salleh ◽  
M. F. Mohd Fauzi ◽  
S. S. Md Nor

Abstract Cellulose is the most abundant natural polymer on the Earth that is widely used in bio-based composites due to its high mechanical properties, availability and biodegradability. All-cellulose composites (ACCs) are known as a new class monocomponent of biocomposites due to both reinforcing and matrix phases that are based on cellulose. However, a technical challenge for ACCs is observed due to their propensity for high moisture absorption (water uptake), leading to the instability and deterioration of the mechanical properties. Therefore, this research focussed towards the improvement of the surface of ACCs in order to increase the resistance to water absorption. Prior to the characterisations, ACCs were chemically treated using dodecytriethoxysilane (DTES) coating solution by dip coating method. In this present study, the effects of two control factors: (i) DTES concentration (1.5, 7.5, and 12.5 vol%), and (ii) heating temperature (50, and 100 °C), were investigated on the ACCs. Upon completion of this treatment, three possible characterisations were conducted including of Fourier Transform Infrared (FTIR) spectroscopy analysis, scanning electron microscopy (SEM), and water absorption (WA) testing. Creation of polysiloxane layer was expected to reduce the tendency to absorb water in ACCs while being applied in the outdoor applications.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 221
Author(s):  
Olesja Starkova ◽  
Oskars Platnieks ◽  
Alisa Sabalina ◽  
Sergejs Gaidukovs

Nanofibrillated cellulose (NFC) is a sustainable functional nanomaterial known for its high strength, stiffness, and biocompatibility. It has become a key building block for the next-generation of lightweight, advanced materials for applications such as consumer products, biomedical, energy storage, coatings, construction, and automotive. Tunable and predictable durability under environmental impact is required for high performance applications. Bio-based poly (butylene succinate) (PBS) composites containing up to 50% NFC content were designed and aged in distilled water or at high relative humidity (RH98%). PBS/NFC composites are characterized by up to 10-fold increased water absorption capacity and diffusivity and the data are correlated with model calculations. Aged samples exhibited decreased crystallinity and melting temperature. Incorporation of NFC into PBS showed up to a 2.6-fold enhancement of the elastic modulus, although accompanied by a loss of strength by 40% and 8-fold reduction in the strain at failure of maximally loaded composites. Hydrothermal ageing had almost no influence on the tensile characteristics of PBS; however, there were considerable degradation effects in PBS/NFC composites. Altered reinforcement efficiency is manifested through a 3.7-fold decreased effective elastic moduli of NFC determined by applying the Halpin–Tsai model and a proportional reduction of the storage moduli of composites. The adhesion efficiency in composites was reduced by hydrothermal ageing, as measured Puckanszky’s adhesion parameter for the strength, which decreased from 3 to 0.8. For the loss factor, Kubat’s adhesion parameter was increased by an order. PBS filled with 20 wt.% NFC is identified as the most efficient composition, for which negative environmental degradation effects are counterbalanced with the positive reinforcement effect. The PBS matrix can be used to protect the NFC network from water.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad L. Hassan ◽  
Shaimaa M. Fadel ◽  
Enas A. Hassan

Nanofibrillated cellulose (NFC) isolated from TEMPO-oxidized rice straw was used to improve thermal and tensile strength properties of acrylate polymer films. Acrylate/NFC mixture containing 15% NFC was used for paper coating, and properties of paper sheets including tensile strength, water absorption, and microscopic structure were investigated. The results showed that the presence of NFC in the acrylate matrix significantly improved tensile strength properties and thermomechanical properties of the acrylate polymer and caused moderate increase in its moisture sorption. The presence of NFC in acrylate emulsion caused significant increase in its viscosity. Paper sheets coated with different thin layers (from 0.2 to 6 microns) of acrylate/NFC showed improvement in tensile strength and decrease of water absorption.


2011 ◽  
Vol 83 (2) ◽  
pp. 762-768 ◽  
Author(s):  
Jian-Bing Zeng ◽  
Ling Jiao ◽  
Yi-Dong Li ◽  
Madhusudhan Srinivasan ◽  
Tao Li ◽  
...  

2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 268
Author(s):  
Jitong Zhao ◽  
Huawei Tong ◽  
Yi Shan ◽  
Jie Yuan ◽  
Qiuwang Peng ◽  
...  

Microbial-induced calcite precipitation (MICP) has been a promising method to improve geotechnical engineering properties through the precipitation of calcium carbonate (CaCO3) on the contact and surface of soil particles in recent years. In the present experiment, water absorption and unconfined compressive strength (UCS) tests were carried out to investigate the effects of three different fiber types (glass fiber, polyester fiber, and hemp fiber) on the physical and mechanical properties of MICP-treated calcareous sand. The fibers used were at 0%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, and 0.40% relative to the weight of the sand. The results showed that the failure strain and ductility of the samples could be improved by adding fibers. Compared to biocemented sand (BS), the water absorption of these three fiber-reinforced biocemented sands were, respectively, decreased by 11.60%, 21.18%, and 7.29%. UCS was, respectively, increased by 24.20%, 60.76%, and 6.40%. Polyester fiber produced the best effect, followed by glass fiber and hemp fiber. The optimum contents of glass fiber and polyester fiber were 0.20% and 0.25%, respectively. The optimum content of hemp fiber was within the range of 0.20–0.25%. Light-emitting diode (LED) microscope and scanning electron microscope (SEM) images lead to the conclusion that only a little calcite precipitation had occurred around the hemp fiber, leading to a poor bonding effect compared to the glass and polyester fibers. It was therefore suggested that polyester fiber should be used to improve the properties of biocemented sand.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


2020 ◽  
Vol 22 (1) ◽  
pp. 105
Author(s):  
Wanting Li ◽  
Zixuan Huang ◽  
Rui Cai ◽  
Wan Yang ◽  
Huawei He ◽  
...  

Silver-based hybrid nanomaterials are receiving increasing attention as potential alternatives for traditional antimicrobial agents. Here, we proposed a simple and eco-friendly strategy to efficiently assemble zinc oxide nanoparticles (ZnO) and silver nanoparticles (AgNPs) on sericin-agarose composite film to impart superior antimicrobial activity. Based on a layer-by-layer self-assembly strategy, AgNPs and ZnO were immobilized on sericin-agarose films using the adhesion property of polydopamine. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction spectroscopy were used to show the morphology of AgNPs and ZnO on the surface of the composite film and analyze the composition and structure of AgNPs and ZnO, respectively. Water contact angle, swelling ratio, and mechanical property were determined to characterize the hydrophilicity, water absorption ability, and mechanical properties of the composite films. In addition, the antibacterial activity of the composite film was evaluated against Gram-positive and Gram-negative bacteria. The results showed that the composite film not only has desirable hydrophilicity, high water absorption ability, and favorable mechanical properties but also exhibits excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria. It has shown great potential as a novel antimicrobial biomaterial for wound dressing, artificial skin, and tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document