scholarly journals A Pragmatic and High-Performance Radiative Cooling Coating with Near-Ideal Selective Emissive Spectrum for Passive Cooling

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 144 ◽  
Author(s):  
Mingxue Chen ◽  
Wenqing Li ◽  
Shuang Tao ◽  
Zhenggang Fang ◽  
Chunhua Lu ◽  
...  

Radiative cooling is a passive cooling technology that can cool a space without any external energy by reflecting sunlight and radiating heat to the universe. Current reported radiative cooling techniques can present good outside test results, however, manufacturing an efficient radiative material which can be applied to the market for large-scale application is still a huge challenge. Here, an effective radiative cooling coating with a near-ideal selective emissive spectrum is prepared based on the molecular vibrations of SiOx, mica, rare earth silicate, and molybdate functional nanoparticles. The radiative cooling coating can theoretically cool 45 °C below the ambient temperature in the nighttime. Polyethylene terephthalate (PET) aluminized film was selected as the coating substrate for its flexibility, low cost, and extensive production. As opposed to the usual investigations that measure the substrate temperature, the radiative cooling coating was made into a cubic box to test its space cooling performance on a rooftop. Results showed that a temperature reduction of 4 ± 0.5 °C was obtained in the nighttime and 1 ± 0.2 °C was achieved in the daytime. Furthermore, the radiative cooling coating is resistant to weathering, fouling, and ultraviolet radiation, and is capable of self-cleaning due to its hydrophobicity. This practical coating may have a significant impact on global energy consumption.

2021 ◽  
Author(s):  
Chongjia Lin ◽  
Yang Li ◽  
Cheng Chi ◽  
Ye Seul Kwon ◽  
Chi Yan Tso ◽  
...  

Abstract Daytime radiative cooling provides an eco-friendly solution to space cooling with zero energy consumption. Despite significant advances, most state-of-the-art radiative coolers show broadband infrared emission with low spectral effectiveness, which limits their cooling temperatures and climate applicabilities, especially in hot humid regions. Here we report an all-inorganic narrowband cooler comprising a solution-derived SiOxNy layer sandwiched between a reflective substrate and a self-assembly monolayer of SiO2 microspheres. It shows a high and diffusive solar reflectance (96%) and strong infrared-selective emittance (94.6%) with superior spectral effectiveness (1.44). Remarkable subambient cooling of up to 5°C was achieved under high humidity without any solar shading or convection cover at noontime in a subtropical coastal city, Hong Kong. Owing to the all-inorganic hydrophobic structure, the emitter showed outstanding resistance to ultraviolet and water in the long-term durability tests. The scalable solution-based fabrication renders this stable high-performance emitter promising for large-scale deployment in various climates.


2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050062
Author(s):  
Zhaolei Meng ◽  
Xiaojian He ◽  
Song Han ◽  
Zijian Hu

Carbon materials are generally employed as supercapacitor electrodes due to their low- cost, high-chemical stability and environmental friendliness. However, the design of carbon structures with large surface area and controllable porous structure remains a daunt challenge. In this work, a three-dimensional (3D) hybrid aerogel with different contents of MoS2 nanosheets in 3D graphene aerogel (MoS2-GA) was synthesized through a facial hydrothermal process. The influences of MoS2 content on microstructure and subsequently on electrochemical properties of MoS2-GA are systematically investigated and an optimized mass ratio with MoS2: GA of 1:2 is chosen to achieve high mechanical robustness and outstanding electrochemical performance in the hybrid structure. Due to the large specific surface area, porous structure and continuous charge transfer network, such MoS2-GA electrodes exhibit high specific capacitance, good rate capability and excellent cyclic stability, showing great potential in large-scale and low-cost fabrication of high-performance supercapacitors.


2018 ◽  
Vol 217 ◽  
pp. 291-299 ◽  
Author(s):  
Yingyuan Zhao ◽  
Nian Jiang ◽  
Xu Zhang ◽  
Jing Guo ◽  
Yanqiang Li ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xing Xing ◽  
Zaiqin Man ◽  
Jie Bian ◽  
Yadong Yin ◽  
Weihua Zhang ◽  
...  

AbstractFast, low-cost, reliable, and multi-component nanopatterning techniques for functional colloidal nanoparticles have been dreamed about by scientists and engineers for decades. Although countless efforts have been made, it is still a daunting challenge to organize different nanocomponents into a predefined structure with nanometer precision over the millimeter and even larger scale. To meet the challenge, we report a nanoprinting technique that can print various functional colloidal nanoparticles into arbitrarily defined patterns with a 200 nm (or smaller) pitch (>125,000 DPI), 30 nm (or larger) pixel size/linewidth, 10 nm position accuracy and 50 nm overlay precision. The nanopatterning technique combines dielectrophoretic enrichment and deep surface-energy modulation and therefore features high efficiency and robustness. It can form nanostructures over the millimeter-scale by simply spinning, brushing or dip coating colloidal nanoink onto a substrate with minimum error (error ratio < 2 × 10−6). This technique provides a powerful yet simple construction tool for large-scale positioning and integration of multiple functional nanoparticles toward next-generation optoelectronic and biomedical devices.


Nanoscale ◽  
2013 ◽  
Vol 5 (13) ◽  
pp. 6173 ◽  
Author(s):  
Irene Emmanuelawati ◽  
Jie Yang ◽  
Jun Zhang ◽  
Hongwei Zhang ◽  
Liang Zhou ◽  
...  

2014 ◽  
Vol 602-603 ◽  
pp. 151-154 ◽  
Author(s):  
Chuan Shan Li ◽  
Ru Li ◽  
Xiao Yong Du ◽  
Ming Xia Zhang ◽  
Jie Tang ◽  
...  

Continuous multi-filament boron nitride fibers have been prepared on a large scale using the melt drawn technique from a low-cost boracic acid. Boracic acid was heated to obtain the molten boric oxide in a melting tank. Molten boric oxide was melt spun in a conventional manner through an 200-tip bushing to produce a continuous multifilament yarn consisting of 200 filaments of boric oxide. Boric oxide fibers were nitrided in an ammonia and were annealed in an inert atmosphere while simultaneously subjecting the fibers to sufficient longitudinal tension as to at least prevent longitudinal shrinkage of the fibers. The resulting fibers, consisting essentially of boron nitride, were less than about 8 μm in diameter and greater than 500 m in length. It indicated that the boron nitride fibers has a sound mechanical function with tensile strength of 1.40 GPa. The continuous boron nitride fibers of high-performance were especially suitable for reinforcing plastic, ceramic or metal matrices in the preparation of fiber reinforced composites.


2013 ◽  
Vol 831 ◽  
pp. 276-281
Author(s):  
Ya Jie Ma ◽  
Zhi Jian Mei ◽  
Xiang Chuan Tian

Large-scale sensor networks are systems that a large number of high-throughput autonomous sensor nodes are distributed over wide areas. Much attention has paid to provide efficient data management in such systems. Sensor grid provides low cost and high performance computing to physical world data perceived through sensors. This article analyses the real-time sensor grid challenges on large-scale air pollution data management. A sensor grid architecture for pollution data management is proposed. The processing of the service-oriented grid management is described in psuedocode. A simulation experiment investigates the performance of the data management for such a system.


Sign in / Sign up

Export Citation Format

Share Document