scholarly journals Effect of Surface Modification on the Primary Stability of Dental Implants by Plasma Oxidation and Storage Treatment

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 622
Author(s):  
Fei Sun ◽  
Shao-Jie Li ◽  
Xin-Chang Li ◽  
Lei Wang ◽  
De-Chun Ba ◽  
...  

Plasma oxidation could produce an oxidized surface, resulting in a graded TiO2−x film layer and significantly improving dental implant hydrophilicity and biocompatibility. Unfortunately, these features are gradually lost by the influence of the environment. In this study, alkali storage was used to improve these characteristics at room temperature. Titanium samples were divided into sandblasting acid-etching (SLA), oxidation (SLA samples that were oxidized), and storage (SLA samples that were oxidized and stored in 0.1 mol/L NaOH solution) groups. We measured the surface properties of each group, including the roughness, chemical composition, and hydrophilicity of these materials. We investigated the effects of titanium storage on cell responses, including cell attachment, proliferation, differentiation. We also investigated the osseointegration of the stored titanium implants. The results showed that the storage process maintains the superhydrophilic properties of oxidation treatment. Oxidized samples promoted cell responses. The descending order of biocompatibility was storage > oxidation > SLA. Furthermore, oxidation and alkali storage had significant effects on bone growth at the early stage of the implant. These results suggested that alkali storage can suitably maintain the surface characteristics of plasma oxidation, and the combination of oxidation and storage treatment can improve the primary implant stability.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5493
Author(s):  
Takayuki Ikeda ◽  
Takahisa Okubo ◽  
Juri Saruta ◽  
Makoto Hirota ◽  
Hiroaki Kitajima ◽  
...  

Titanium implants undergo temperature fluctuations during manufacturing, transport, and storage. However, it is unknown how this affects their bioactivity. Herein, we explored how storage (six months, dark conditions) and temperature fluctuations (5–50 °C) affected the bioactivity of titanium implants. Stored and fresh acid-etched titanium disks were exposed to different temperatures for 30 min under wet or dry conditions, and their hydrophilicity/hydrophobicity and bioactivity (using osteoblasts derived from rat bone marrow) were evaluated. Ultraviolet (UV) treatment was evaluated as a method of restoring the bioactivity. The fresh samples were superhydrophilic after holding at 5 or 25 °C under wet or dry conditions, and hydrophilic after holding at 50 °C. In contrast, all the stored samples were hydrophobic. For both fresh and stored samples, exposure to 5 or 50 °C reduced osteoblast attachment compared to holding at 25 °C under both wet and dry conditions. Regression analysis indicated that holding at 31 °C would maximize cell attachment (p < 0.05). After UV treatment, cell attachment was the same or better than that before temperature fluctuations. Overall, titanium surfaces may have lower bioactivity when the temperature fluctuates by ≥20 °C (particularly toward lower temperatures), independent of the hydrophilicity/hydrophobicity. UV treatment was effective in restoring the temperature-compromised bioactivity.


2010 ◽  
Vol 6 (1) ◽  
pp. 36
Author(s):  
Silvana Dinaintang Harikedua

The objective of this study was to investigate the effect of ginger extract addition and refrigerate storage on sensory quality of Tuna through panelist’s perception. Panelists (n=30) evaluated samples for overall appearance and flavor attribute using hedonic scale 1–7. The sample which is more acceptable by panelists on flavor attributes having 3% gingers extract and storage for 3 days. The less acceptable sample on flavor attribute having 0% ginger extract and storage for 9 days. On the other hand, the sample which is more acceptable by panelists on overall appearance having 0% ginger extract without storage treatment. The less acceptable sample on overall appearance having 3% ginger extract and storage for 9 days.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2550
Author(s):  
Chia-Fei Liu ◽  
Kai-Chun Chang ◽  
Ying-Sui Sun ◽  
Diem Thuy Nguyen ◽  
Her-Hsiung Huang

Our objective in this study was to promote the growth of bone cells on biomedical titanium (Ti) implant surfaces via surface modification involving sandblasting, alkaline etching, and type I collagen immobilization using the natural cross-linker genipin. The resulting surface was characterized in terms topography, roughness, wettability, and functional groups, respectively using field emission scanning electron microscopy, 3D profilometry, and attenuated total reflection-Fourier transform infrared spectroscopy. We then evaluated the adhesion, proliferation, initial differentiation, and mineralization of human bone marrow mesenchymal stem cells (hMSCs). Results show that sandblasting treatment greatly enhanced surface roughness to promote cell adhesion and proliferation and that the immobilization of type I collagen using genipin enhanced initial cell differentiation as well as mineralization in the extracellular matrix of hMSCs. Interestingly, the nano/submicro-scale pore network and/or hydrophilic features on sandblasted rough Ti surfaces were insufficient to promote cell growth. However, the combination of all proposed surface treatments produced ideal surface characteristics suited to Ti implant applications.


Author(s):  
Anders Palmquist ◽  
Omar M. Omar ◽  
Marco Esposito ◽  
Jukka Lausmaa ◽  
Peter Thomsen

Bone-anchored titanium implants have revolutionized oral healthcare. Surface properties of oral titanium implants play decisive roles for molecular interactions, cellular response and bone regeneration. Nevertheless, the role of specific surface properties, such as chemical and phase composition and nanoscale features, for the biological in vivo performance remains to be established. Partly, this is due to limited transfer of state-of-the-art preparation techniques to complex three-dimensional geometries, analytical tools and access to minute, intact interfacial layers. As judged by the available results of a few randomized clinical trials, there is no evidence that any particular type of oral implant has superior long-term success. Important insights into the recruitment of mesenchymal stem cells, cell–cell communication at the interface and high-resolution imaging of the interface between the surface oxide and the biological host are prerequisites for the understanding of the mechanisms of osseointegration. Strategies for development of the next generation of material surface modifications for compromised tissue are likely to include time and functionally programmed properties, pharmacological modulation and incorporation of cellular components.


2016 ◽  
Vol 19 ◽  
pp. 45-51 ◽  
Author(s):  
Jayandra Prasad Shrestha ◽  
Namrata Tusuju Shrestha

This paper presents a framework for a possible expansion plan of Nepal’s electricity generation system using VALORAGUA and Wien Automatic System Planning (WASP-IV) models as examples. Given that Nepal seeks to add several hydropower plants to the Integrated National Power System (INPS) in the next few years, this type of planning is crucial. To explore potential expansion plans, the 48 hydropower plants (20 of which are currently operating) within 18 hydro networks and two diesel plants are included, and different options such as the possibility of export, seasonal variations in hydrology, and projected growth rates in gross domestic product are considered. The results illustrate the long run marginal cost (LRMC) and loss of load probability (LoLP) through 2030 in Nepal. It is found that LRMC is 3.50 Nepali Rupees per kilowatt hour at 4.1% of average LoLP. While scrutinizing the results, it is found that LoLP is higher in early stage of projections due to generation capacity limitations from 2014 to 2016. However, by the end of 2017, the LRMC and LoLP begin to decrease significantly. On this premise, the model suggests to introduce large storage plants for hydropower generation and export of that excess energy. Furthermore, a proper implementation of proposed peaking and storage plants to meet rising demand can offset the need to obtain electricity through more expensive and less environmentally-friendly means such as thermal/diesel plants.HYDRO Nepal JournalJournal of Water, Energy and EnvironmentIssue: 19Page: 45-51


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 186 ◽  
Author(s):  
Miika Martikainen ◽  
Magnus Essand

Glioblastoma (GBM) is the most common type of primary brain tumor in adults. Despite recent advances in cancer therapy, including the breakthrough of immunotherapy, the prognosis of GBM patients remains dismal. One of the new promising ways to therapeutically tackle the immunosuppressive GBM microenvironment is the use of engineered viruses that kill tumor cells via direct oncolysis and via stimulation of antitumor immune responses. In this review, we focus on recently published results of phase I/II clinical trials with different oncolytic viruses and the new interesting findings in preclinical models. From syngeneic preclinical GBM models, it seems evident that oncolytic virus-mediated destruction of GBM tissue coupled with strong adjuvant effect, provided by the robust stimulation of innate antiviral immune responses and adaptive anti-tumor T cell responses, can be harnessed as potent immunotherapy against GBM. Although clinical testing of oncolytic viruses against GBM is at an early stage, the promising results from these trials give hope for the effective treatment of GBM in the near future.


2010 ◽  
Vol 32 (5) ◽  
pp. 324-334 ◽  
Author(s):  
W. ZHENG ◽  
Q.-H. WANG ◽  
Y.-J. LIU ◽  
J. LIU ◽  
H. FENG ◽  
...  

2008 ◽  
Vol 1129 ◽  
Author(s):  
Yue Cui ◽  
Shu Yang

AbstractWe report the formation of wrinkle patterns on porous elastomeric membrane and their fabrication of hierarchical architectures through mechanical stretching and replica molding. The technique builds upon a buckling instability of a stiff layer supported by a porous elastomeric membrane which was induced by surface plasma oxidation of the pre-stretched porous elastomer followed by removal of the applied mechanical strain to form wrinkle patterns, and replica molding of the deformed features on the porous membrane into epoxy to form hierarchical architectures through casting the UV-curable epoxy prepolymer and UV curing. We find that due to the existence of micropores on the membrane, the formation of wrinkle patterns is different from that formed on a continuous elastomeric film, and by varying the applied mechanical stretching strain condition and plasma oxidation condition, the wrinkle patterns could be either confined by the micropores on the membrane to exhibit a wavelength equal to its pitch or form wrinkles with much large wavelength compared with that formed on a continuous elastomeric film. Therefore, the micropillar arrays fabricated by replica molding could stand on different types of wrinkle patterns to form different hierarchical architectures. The method we illustrate here offers a simple and cost-effective approach to fabricate various hierarchical structures, and provides possibilities for potential applications in various fields, such as microfluidics, micro- and nanofabrication of complex structures, crystal formation, cell attachment, superhydrophobicity and dry adhesion.


Sign in / Sign up

Export Citation Format

Share Document