scholarly journals Suitability of a Progenitor Cell-Enriching Device for In Vitro Applications

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Antonio Celentano ◽  
Tami Yap ◽  
Giuseppe Pantaleo ◽  
Rita Paolini ◽  
Michael McCullough ◽  
...  

Rigenera® is a novel class-1 medical device that produces micro-grafts enriched of progenitors cells without ex vivo manipulation of donor tissues. The manufacturer’s protocol has been supported for a wide variety of clinical uses in the field of regenerative medicine. This study aimed to evaluate its potential use for in vitro cell models. Human primary oral fibroblasts were cultured under standard conditions and processed through Rigenera® over a time course of up to 5 min. Cell viability was assessed using a Trypan Blue exclusion test. It is possible to process fibroblasts through Rigenera® although an initial reduction of cell viability was observed. Additionally, debris was evident in the cell suspension of the processed samples. Scanning electron microscopy (SEM) microanalysis of the debris and electron energy-loss spectroscopy confirmed the presence of metal wear possibly due to the processing conditions used in this study. Interestingly, pore sizes within Rigeneracons® grids were found to range between 250–400 μm. This is the first report assessing the suitability of Rigenera® and Rigeneracons® for in vitro applications. Whilst Rigenera® workflow was found to be amenable to laboratory uses, our results strongly suggest that further research and development is necessary to support the utilization of this technology for enrichment of micro-graft derived cells and cell sorting in vitro.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 730
Author(s):  
Biji Mathew ◽  
Leianne A. Torres ◽  
Lorea Gamboa Gamboa Acha ◽  
Sophie Tran ◽  
Alice Liu ◽  
...  

Cell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC’s paracrine effects. For the clinical translation of EV therapy, it is important to determine the cellular destination and time course of EV uptake in the retina following administration. Here, we tested the cellular fate of EVs using in vivo rat retinas, ex vivo retinal explant, and primary retinal cells. Intravitreally administered fluorescent EVs were rapidly cleared from the vitreous. Retinal ganglion cells (RGCs) had maximal EV fluorescence at 14 days post administration, and microglia at 7 days. Both in vivo and in the explant model, most EVs were no deeper than the inner nuclear layer. Retinal astrocytes, microglia, and mixed neurons in vitro endocytosed EVs in a dose-dependent manner. Thus, our results indicate that intravitreal EVs are suited for the treatment of retinal diseases affecting the inner retina. Modification of the EV surface should be considered for maintaining EVs in the vitreous for prolonged delivery.


2015 ◽  
Vol 44 (4) ◽  
pp. 195-199 ◽  
Author(s):  
Priscilla Barbosa Ferreira Soares ◽  
Camilla Christian Gomes Moura ◽  
Huberth Alexandre da Rocha Júnior ◽  
Paula Dechichi ◽  
Darceny Zanetta-Barbosa

<title>Abstract</title><sec><title>Objective</title><p>Evaluate the biological performance of titanium alloys grade IV under different surface treatments: sandblasting and double etching (Experimental surface 1; Exp1, NEODENT); surface with wettability increase (Experimental surface 2; Exp2, NEODENT) on response of preliminary differentiation and cell maturation.</p></sec><sec><title>Material and method</title><p>Immortalized osteoblast cells were plated on Exp1 and Exp2 titanium discs. The polystyrene plate surface without disc was used as control group (C). Cell viability was assessed by measuring mitochondrial activity (MTT) at 4 and 24 h (n = 5), cell attachment was performed using trypan blue exclusion within 4 hours (n = 5), serum total protein and alkaline phosphatase normalization was performed at 4, 7 and 14 days (n = 5). Data were analyzed using one-way ANOVA and Tukey test.</p></sec><sec><title>Result</title><p>The values of cell viability were: 4h: C– 0.32±0.01<sup>A</sup>; Exp1– 0.34±0.08<sup>A</sup>; Exp2– 0.29±0.03<sup>A</sup>. 24h: C– 0.43±0.02<sup>A</sup>; Exp1– 0.39±0.01<sup>A</sup>; Exp2– 0.37±0.03<sup>A</sup>. The cell adhesion counting was: C– 85±10<sup>A</sup>; Exp1- 35±5<sup>B</sup>; Exp2– 20±2<sup>B</sup>. The amounts of serum total protein were 4d: C– 40±2<sup>B</sup>; Exp1– 120±10<sup>A</sup>; Exp2– 130±20<sup>A</sup>. 7d: C– 38±2<sup>B</sup>; Exp1– 75±4<sup>A</sup>; Exp2– 70±6<sup>A</sup>. 14 d: C– 100±3<sup>A</sup>; Exp1– 130±5<sup>A</sup>; Exp2– 137±9<sup>A</sup>. The values of alkaline phosphatase normalization were: 4d: C– 2.0±0.1<sup>C</sup>; Exp1– 5.1±0.8<sup>B</sup>; Exp2– 9.8±2.0<sup>A</sup>. 7d: C– 1.0±0.01<sup>C</sup>; Exp1– 5.3±0.5<sup>A</sup>; Exp2– 3.0±0.3<sup>B</sup>. 14 d: C– 4.1±0.3<sup>A</sup>; Exp1– 4.4±0.8<sup>A</sup>; Exp2– 2.2±0.2<sup>B</sup>. Different letters related to statistical differences.</p></sec><sec><title>Conclusion</title><p>The surfaces tested exhibit different behavior at dosage of alkaline phosphatase normalization showing that the Exp2 is more associated with induction of cell differentiation process and that Exp1 is more related to the mineralization process.</p></sec>


2006 ◽  
Vol 84 (3) ◽  
pp. 570-579 ◽  
Author(s):  
Niamh O’Kennedy ◽  
Lynn Crosbie ◽  
Machteld van Lieshout ◽  
John I Broom ◽  
David J Webb ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1868
Author(s):  
Anna Löfdahl ◽  
Andreas Jern ◽  
Samuel Flyman ◽  
Monica Kåredal ◽  
Hanna L Karlsson ◽  
...  

Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 μg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 μg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.


1987 ◽  
Author(s):  
U Cornelli ◽  
J M Welena ◽  
J Fareed ◽  
X Huan ◽  
D Hoppensteadt

Ateriod obtained from beef mucosal lining is a sulfomuco-polysaccharide mixture of various glycosaminoglycans which contains derma tans, heparatans and traces of heparin. It has been used in the treatment ofatherosclerosis and related vaso-oclusive disorders. Ateriod is standardized in terms of its lipoprotein lipase activation actions. Ateriod contains signfi-cant in vitro anticoagulant and antiprotease (anti-factor Xa and anti-factor Ila) activities as measured by clot-based and chromr ogenic substrate methods. However, this in vitro activity is 7-10 times lesser than heparin. In order to study the antithrombotic actions of this agent in subcutaneous, intravenous and oral routes, we utilized a rabbit stasis thrombosis model with a prothrombin complex concentrate/Russell's viper venom thrombogenic challenge and prolonged stasis. The apparent ED50 for the antithrombotic action were found to be: IV (75-100 ug/ kg), SC (0.8-1.3 mg/kg) and oral (20-30 mg/kg). In both the IV- and SC studies, sustained anticoagulant and antiprotease actions were evident. The observed antithrombotic actions did not relate to the anti-factor IIa or anti-factor Xa actions. Pretreatment of Ateriod with equigravimetric amounts of protamine and platelet factor 4 did not neutralize the antithrombotic actions of this agent in the rabbit model. In a primate (Macaca mulatta) model of pharmacokinetics, ex vivo analysis following subcutaneously administered Ateriod showed sustained anticoagulant and antiprotease effects. The time course of the subcutaneously administered Ateriod was markedly different than heparin and a low molecular weight heparin. Treated animals were shown to resist induced hypercoagulability following injection of homologous serum as measured by FPA generation for extended periods. These studies suggest that Ateriod produces a strong antithrombotic action and that it has highly sustained pharmacokinetics. The antithrombotic activity appears to be primarily mediated via non-antithrombin - HI dependent events which may be related to heparin cofactor II and vascular/ cellular modifications.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1139
Author(s):  
Liva Checkmahomed ◽  
Blandine Padey ◽  
Andrés Pizzorno ◽  
Olivier Terrier ◽  
Manuel Rosa-Calatrava ◽  
...  

Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.


1963 ◽  
Vol 18 (2) ◽  
pp. 237-250 ◽  
Author(s):  
Elliott Robbins ◽  
Philip I. Marcus

The in vitro localization of acridine orange (AO) in living cells was monitored by means of fluorescence microscopy, quantitative cell viability studies, and photofluorimetric measurements following dye-cell interaction. The parameters, pH, time, dye concentration, and the metabolic state of the cell were found to exert a profound influence on the time course and distribution of staining. The parameters studied are mutually interdependent, and intracellular dye localization may be predictably altered by their appropriate manipulation. Conditions are defined whereby two morphologically distinct but physiologically interrelated reactions, namely, acridine orange particle (AOP) formation and cytoplasmic reddening (CR) may be caused, prevented, reversed, or modified. These results are explained in terms of the facilitation or inhibition of an intracytoplasmic dye-segregating mechanism, in turn affected by the rate of dye ingress and the physiological state of the cell. Whereas the accumulation of AO in AOP is compatible with cell viability, the appearance of CR is correlated with cell death. It is pointed out that meaningful interpretation of vital staining requires precise regulation of many parameters in the extracellular milieu. A scheme of cell compartmentalization with respect to AO is proposed to satisfactorily account for the effects of environmental variations on the distribution and ultimate fate of intracellular dye. The AOP are viewed as normally present acid phosphatase-positive multivesicular bodies.


2006 ◽  
Vol 17 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Daniel Araki Ribeiro ◽  
Mariângela Esther Alencar Marques ◽  
Daisy Maria Fávero Salvador

Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 muL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.


1986 ◽  
Vol 64 (5) ◽  
pp. 775-779 ◽  
Author(s):  
Douglas Hamilton ◽  
John D. S. McKean ◽  
John Tulip ◽  
Donald Boisvert ◽  
Judy Cummins

✓ The authors have investigated various factors involved in the photoradiation treatment of 9L glioma cells. The cells were grown in tissue culture and exposed to light from a laser source that allowed accurate quantitation of the light energy. Cell death was determined following treatment using the trypan blue exclusion test. It was shown that the treatment is very wavelength-dependent following the absorption spectrum of hematoporphyrin derivative (HPD). The absorption peaks in the lower part of the spectrum are more efficient than those of higher wavelengths. Photoradiation therapy is more effective the higher the concentration of HPD. Intensity of light is a very important factor in calculating the total dose of light necessary for this treatment.


Sign in / Sign up

Export Citation Format

Share Document