scholarly journals Effects of Oxygen Content on Operational Characteristics and Stability of High-Mobility IGTO Thin-Film Transistors during Channel Layer Deposition

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 698
Author(s):  
Hwan-Seok Jeong ◽  
Hyun-Seok Cha ◽  
Seong-Hyun Hwang ◽  
Dong-Ho Lee ◽  
Sang-Hun Song ◽  
...  

In this study, we investigated the effects of oxygen content on the transfer characteristics and stability of high-mobility indium-gallium-tin oxide (IGTO) thin-film transistors (TFTs) during channel layer deposition. The IGTO thin films were deposited through direct current sputtering at different ambient oxygen percentages of 10%, 20%, 30%, 40%, and 50%. The experimental results indicate that the drain currents were hardly modulated by the gate-to-source voltage in the IGTO TFT prepared at 10% ambient oxygen. However, as the oxygen content increased from 20% to 50%, the transfer curves shifted to the positive direction with a decrease in field-effect mobility (μFE). The IGTO TFTs exhibited deteriorated positive bias stress (PBS) stability as the oxygen content increased. However, the stabilities of the IGTO TFTs under negative bias illumination stress (NBIS) improved with an increase in the ambient oxygen percentage during the channel layer deposition. Furthermore, to understand the mechanism of the observed phenomena, we performed X-ray photoelectron spectroscopy (XPS) analysis of the IGTO thin films prepared at different oxygen percentages. The XPS results demonstrate that the deteriorated PBS stability and enhanced NBIS stability of the IGTO TFTs prepared at higher oxygen percentages were mainly ascribed to the larger amount of oxygen interstitials resulting from the excess oxygen and the smaller number of oxygen vacancies within the IGTO, respectively. The obtained results suggest that the oxygen percentages of 30% in the sputtering ambient is the most suitable oxygen percentage for optimizing the electrical properties (μFE = 24.2 cm2/V·s, subthreshold swing = 0.43 V/dec, and threshold voltage = −2.2 V) and adequate PBS and NBIS stabilities of IGTO TFTs.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 852 ◽  
Author(s):  
Seungbeom Choi ◽  
Kyung-Tae Kim ◽  
Sung Park ◽  
Yong-Hoon Kim

In this paper, we demonstrate high-mobility inkjet-printed indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) using a solution-processed Sr-doped Al2O3 (SAO) gate dielectric. Particularly, to enhance to the electrical properties of inkjet-printed IGZO TFTs, a linear-type printing pattern was adopted for printing the IGZO channel layer. Compared to dot array printing patterns (4 × 4 and 5 × 5 dot arrays), the linear-type pattern resulted in the formation of a relatively thin and uniform IGZO channel layer. Also, to improve the subthreshold characteristics and low-voltage operation of the device, a high-k and thin (~10 nm) SAO film was used as the gate dielectric layer. Compared to the devices with SiO2 gate dielectric, the inkjet-printed IGZO TFTs with SAO gate dielectric exhibited substantially high field-effect mobility (30.7 cm2/Vs). Moreover, the subthreshold slope and total trap density of states were also significantly reduced to 0.14 V/decade and 8.4 × 1011/cm2·eV, respectively.


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34215-34223
Author(s):  
So-Yeong Na ◽  
Sung-Min Yoon

Oxide thin films transistors (TFTs) with Hf and Al co-incorporated ZnO active channels prepared by atomic-layer deposition are presented.


2016 ◽  
Vol 10 (6) ◽  
pp. 493-497 ◽  
Author(s):  
Peng Xiao ◽  
Ting Dong ◽  
Linfeng Lan ◽  
Zhenguo Lin ◽  
Wei Song ◽  
...  

2018 ◽  
Vol 6 (37) ◽  
pp. 9981-9989 ◽  
Author(s):  
Nikhil Nikhil ◽  
Rajiv K. Pandey ◽  
Praveen Kumar Sahu ◽  
Manish Kumar Singh ◽  
Rajiv Prakash

Successful practical application of a polymer or its nanocomposite depends on the ability to produce a high performance electronic device at a significantly lesser cost and time than those needed to manufacture conventional devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (29) ◽  
pp. 22712-22717 ◽  
Author(s):  
Soumyadeep Sinha ◽  
Devika Choudhury ◽  
Gopalan Rajaraman ◽  
Shaibal K. Sarkar

DFT study of the growth mechanism of atomic layer deposited Zn3N2 thin film applied as a channel layer of TFT.


2019 ◽  
Vol 16 (12) ◽  
pp. 75-80
Author(s):  
Meng Lun Wu ◽  
Kuang Chung Liu ◽  
Shih Hua Hsiao ◽  
JianJang Huang

2005 ◽  
Vol 86 (1) ◽  
pp. 013503 ◽  
Author(s):  
H. Q. Chiang ◽  
J. F. Wager ◽  
R. L. Hoffman ◽  
J. Jeong ◽  
D. A. Keszler

Sign in / Sign up

Export Citation Format

Share Document