scholarly journals Microstructure Evolution and Lifetime Extension Mechanism of Sn-Added Fe-Based Pre-Alloy Brazing Coating in Diamond Tools

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 364
Author(s):  
Dashuang Liu ◽  
Weimin Long ◽  
Mingfang Wu ◽  
Kai Qi ◽  
Juan Pu

The effect of Sn content added in pre-alloy powder on the microstructure, porosity, hardness and bending strength of hot pressing sintering of a diamond matrix was investigated. The results show that with the increase of Sn content in the pre-alloy powder, a reduction in grain size and porosity as well as an increase in hardness is observed. As a result of the reduction in porosity, the flexural strength increases with the increase in the Sn content in the pre-alloy powder. However, with the increase of Sn content, the bending strength decreases owing to the formation of Cu5.6Sn in the matrix. The properties of the diamond matrix are improved, and the lifetime of the diamond matrix is prolonged when the Sn content is 4 wt.%.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Aidong Xia ◽  
Jie Yin ◽  
Xiao Chen ◽  
Zhengren Huang ◽  
Xuejian Liu ◽  
...  

In this work, a (SiC-AlN)/ZrB2 composite with outstanding mechanical properties was prepared by using polymer-derived ceramics (PDCs) and hot-pressing technique. Flexural strength reached up to 460 ± 41 MPa, while AlN and ZrB2 contents were 10 wt%, and 15 wt%, respectively, under a hot-pressing temperature of 2000 °C. XRD pattern-evidenced SiC generated by pyrolysis of polycarbosilane (PCS) was mainly composed by 2H-SiC and 4H-SiC, both belonging to α-SiC. Micron-level ZrB2 secondary phase was observed inside the (SiC-AlN)/ZrB2 composite, while the mean grain size (MGS) of SiC-AlN matrix was approximately 97 nm. This unique nano-micron hybrid microstructure enhanced the mechanical properties. The present investigation provided a feasible tactic for strengthening ceramics from PDCs raw materials.


2017 ◽  
Vol 17 (1) ◽  
pp. 27-30
Author(s):  
R. Dańko

Abstract The results of investigations of the influence of the matrix grain sizes on properties of cores made by the blowing method are presented in the hereby paper. Five kinds of matrices, differing in grain size compositions, determined by the laser diffraction method in the Analysette 22NanoTec device, were applied in investigations. Individual kinds of matrices were used for making core sands in the Cordis technology. From these sands the shaped elements, for determining the apparent density of compacted sands and their bending strength, were made by the blowing method. The shaped elements (cores) were made at shooting pressures being 3, 4 and 5 atn. The bending strength of samples were determined directly after their preparation and after the storing time of 1 hour.


2012 ◽  
Vol 512-515 ◽  
pp. 706-709 ◽  
Author(s):  
Chang Ling Zhou ◽  
Yan Yan Wang ◽  
Zhi Qiang Cheng ◽  
Chong Hai Wang ◽  
Rui Xiang Liu

ZrB2-20%volSiC ceramic composites with different volume of BN short fiber were fabricated by the hot-pressing sintering under 2000°C. The content of BN short fiber changed from 0 to 15vol%. The density, flexural strength, fracture toughness and thermal expansions coefficient were studied. The microstructures of the samples were observed by scanning electron microscopy. The results show that the introducing of BN short fiber into the ZrB2-20%volSiC lead to a serious of change to the mechanical properties of the ceramic. When the content of the BN short fiber is 10vol%, the flexural strength and fracture toughness reach 422.1MPa and 6.15 MPa•m 1/2 respectively. And the mechanism of the increasing toughness was studied.


2019 ◽  
Vol 944 ◽  
pp. 531-536
Author(s):  
Ke Jia Kang ◽  
Peng Fan ◽  
Jian Zhang ◽  
Qiang Guo Luo ◽  
Qiang Shen ◽  
...  

In this study, the W-Si-C multi-phase composites were fabricated by an arc melting method. With addition of SiC, the grain size of W is obviously reduced, and the small angle misorientation becomes dominate, which is beneficial for the improvement of deformability. The effects of SiC additions (from 0.5 to 3wt%) on the microstructure and mechanical properties are mainly investigated. With 1 wt% SiC addition, the flexural strength reaches the highest value. The self-generation of W5Si3 may enhance the strength and ductility, but too much W5Si3 exists as brittle BP (Brittle to Plastic) microstructure. The highest flexural strength is obtained at approximately 1 vol% W5Si3.


2015 ◽  
Vol 655 ◽  
pp. 45-48
Author(s):  
Kun Li ◽  
Hai Yan Chen ◽  
Qiu Shuang He ◽  
Li Hua Dong

(0, 5, 10, 15, 20) vol% CBN-WC/Co composites were consolidated by ball milling and the following hot-pressing sintering method. WC, Co and CBN powders were used as the starting materials. The effects of the CBN content on the density, microstructure and mechanical properties of CBN-WC/Co composites were investigated. The results showed that the CBN content had remarkable influence on the microstructure and mechanical properties of CBN-WC/Co Composites. With the increasing content of CBN, the density decrease, while Vickers hardness and flexural strength increased initially to the maximum values and then decreased at CBN 10 vol%. When 10 vol% CBN-WC/Co powders were hot-pressing sintered at 1350°C and 20MPa for 90 min, an excellent Vickers hardness of 19.8GPa was achieved, combining a flexural strength of 682MPa.


2014 ◽  
Vol 602-603 ◽  
pp. 447-450 ◽  
Author(s):  
Wei Shang ◽  
Hai Long Wang ◽  
Shi Jing Zhao ◽  
Xiao Tong Zhao ◽  
Hong Liang Xu ◽  
...  

ZrB2-Cu composite is a new electrical contact materials in the integration of high conductivity, high wear resistance and good mechanical strength. In this paper, ZrB2-Cu composites were prepared by hot-pressing sintering at 800~900 °C under a pressure of 20 MPa.The densification of ZrB2-Cu composites was improved by the addition of nickel using an electroless metal plating technique. X-ray diffraction and scan electron microscopy were used to analyze the phase and microstructure of ZrB2-Cu composites. The results showed that ZrB2-Cu composites with 60 vol % Cu which was sintered at 900 °C had a higher relative density, highest flexural strength of 381 MPa and higher hardness of 2.16 GPa(HV). ZrB2-Cu composites with 50 vol % Cu which was sintered at 900 °C had higher flexural strength of 297 MPa and the highest hardness of 2.66 GPa.


2013 ◽  
Vol 745-746 ◽  
pp. 700-705
Author(s):  
Huang Liu ◽  
Guo Qiang Luo ◽  
Pin Gan Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

SiC/Cu composites exhibit low density, low coefficient of thermal expansion and excellent mechanical properties. In this study, Zn of 2 wt. % was added as the sintering activator, and the high volume faction (60%) SiC/Cu composites was fabricated by hot pressing sintering technology. The phase composition and morphology of as-prepare samples were characterized by X-ray diffraction (XRD) system and scanning electron microscopy (SEM) equipped with an energy-dispersive spectroscopy (EDS) system. The as-prepared SiC/Cu composites were dense and uniform as well as void free. The results show that SiC/Cu composites can reach excellent mechanical properties of SiC/Cu composites. With the increase of sintering temperature, Vickers hardness and the bending strength of the samples increased obviously and the as-prepared SiC/Cu composites achieved a maximum Vickers hardness and bending strength respectively of 195MPa and 140MPa.


2010 ◽  
Vol 434-435 ◽  
pp. 173-177 ◽  
Author(s):  
Bao Xia Ma ◽  
Wen Bo Han ◽  
Xing Hong Zhang

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.


2007 ◽  
Vol 280-283 ◽  
pp. 1433-1436
Author(s):  
Chang Qing Hong ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Qiang Xu ◽  
Xiao Dong He

TiB2 -Cu cermet with the relative density of 92% was produced from titanium, boron and copper powders by combustion synthesis and subsequently pseudo hot isostatic pressing. To improve its mechanical and thermal physical properties, the two-time hot pressing sintering test was carried out at 1050°, 1090° and 1150°C respectively. The deformation behavior and variation of micro- structure and mechanical properties were investigated in detail. The results showed that the relative density and the flexural strength increase remarkably after two-time hot pressing. The relative density reaches 605.5MPa and the flexural strength reaches 96% when the two-time pressing temperature is at 1090°C, and the values increase 12% and 6% compared to that before two-time pressing.


2010 ◽  
Vol 434-435 ◽  
pp. 189-192
Author(s):  
Yong Zhang ◽  
Ping Hu ◽  
Xing Hong Zhang

The influence of hot pressing temperature and SiC content on the microstructure and mechanical properties of ZrB2-SiC ceramics was investigated. ZrB2 containing 20 volume percent SiC were prepared by hot pressing at 1850, 1900 and 1950°C for 60 min. Fully dense ceramic was obtained after hot pressing at temperature of 1950°C. In addition, the materials with SiC content of 0, 10vol.%, 15 vol.%, 20 vol.% and 30 vol.% hot pressed at 1950°C were also investigated. Results showed that the grain size of the ZrB2 significantly reduced on adding 10vol.% SiC and then decreased slightly with further increasing SiC content, whereas the grain size of SiC exhibited a opposite trend. The flexural strength of ZrB2-SiC ceramics remarkedly increased on adding 10vol.% SiC due to the significant decrease of ZrB2 particle size and then slightly increased with increasing SiC content up to 20vol.%. However, further increasing SiC content led to a reduction of the flexural strength.


Sign in / Sign up

Export Citation Format

Share Document