scholarly journals Evaluating Silicon Carbide-Based Slurries and Molds for the Manufacture of Aircraft Turbine Components by the Investment Casting

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 433 ◽  
Author(s):  
Paweł Wiśniewski

Silicon carbide (SiC) is a promising material for the fabrication of ceramic shell molds due to its high mechanical strength, hardness, thermal shock resistance, and thermal conductivity compared with commonly used slurries. This article describes the test results of casting materials, i.e., SiC-based powders and aqueous binders with aluminum oxide nanoparticles, as well as the parameters of slurries used for prime coats and structural layers. Tests were also performed to evaluate the physical and mechanical properties of SiC-based shell molds for the manufacture of aircraft turbine components. Two SiC-based slurries with solid concentrations of 65 and 70 wt.% were prepared, and their viscosity, density, pH, quantity, thickness, and copper plate adhesion (plate weight test) were investigated. Fourteen days were required to prepare and evaluate the slurry parameters. The results showed that SiC-based slurries had a Zahn cup #4 outflow time of 33.1 s to fabricate the first two coats and 14.8 s to fabricate the shell mold structural layers. Three series of SiC-based shell mold samples were prepared: after dewaxing (PW1), after burnout preheating at 700 °C (PW2), and after annealing at 1200 °C (PW3). The bending mechanical strength, Young’s modulus, and Weibull’s modulus of the samples were calculated, and the roughness (Ra and Rq) and microstructures of samples were also analyzed (SEM). Inner defects were evaluated by CMT (µCT). The Ra and Rq values of the prime coat of the SiC-based shell mold did not exceed 5 µm. The fabricated SiC shell molds had bending mechanical strengths from 1.21–2.28 MPa, Young’s modulus of 102.97–207.66 MPa, and a Weibull’s modulus from 5.36–9.94. The shell molds fabricated on the technical scale met the requirements specified for industrial shell molds.

2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2020 ◽  
Author(s):  
Jackie E. Kendrick ◽  
Lauren N. Schaefer ◽  
Jenny Schauroth ◽  
Andrew F. Bell ◽  
Oliver D. Lamb ◽  
...  

Abstract. Volcanoes represent one of the most critical geological settings for hazard modelling due to their propensity to both unpredictably erupt and collapse, even in times of quiescence. Volcanoes are heterogeneous at multiple scales, from porosity which is variably distributed and frequently anisotropic to strata that are laterally discontinuous and commonly pierced by fractures and faults. Due to variable and, at times, intense stress and strain conditions during and post-emplacement, volcanic rocks span an exceptionally wide range of physical and mechanical properties. Understanding the constituent materials' attributes is key to improving the interpretation of hazards posed by the diverse array of volcanic complexes. Here, we examine the spectrum of physical and mechanical properties presented by a single dome-forming eruption at a dacitic volcano, Mount Unzen (Japan) by testing a number of isotropic and anisotropic lavas in tension and compression and using monitored acoustic emission (AE) analysis. The lava dome was erupted as a series of 13 lobes between 1991–1995, and its ongoing instability means much of the volcano and its surroundings remain within an exclusion zone today. During a field campaign in 2015, we selected 4 representative blocks as the focus of this study. The core samples from each block span range in porosity from 9.14 to 42.81 %, and permeability ranges from 1.54 × 10−14 to 2.67 × 10−10 m2 (from 1065 measurements). For a given porosity, sample permeability varies by > 2 orders of magnitude is lower for macroscopically anisotropic samples than isotropic samples of similar porosity. An additional 379 permeability measurements on planar block surfaces ranged from 1.90 × 10−15 to 2.58 × 10−12 m2, with a single block having higher standard deviation and coefficient of variation than a single core. Permeability under confined conditions showed that the lowest permeability samples, whose porosity largely comprises microfractures, are most sensitive to effective pressure. The permeability measurements highlight the importance of both scale and confinement conditions in the description of permeability. The uniaxial compressive strength (UCS) ranges from 13.48 to 47.80 MPa, and tensile strength (UTS) using the Brazilian disc method ranges from 1.30 to 3.70 MPa, with crack-dominated lavas being weaker than vesicle-dominated materials of equivalent porosity. UCS is lower in saturated conditions, whilst the impact of saturation on UTS is variable. UCS is between 6.8 and 17.3 times higher than UTS, with anisotropic samples forming each end member. The Young's modulus of dry samples ranges from 4.49 to 21.59 GPa and is systematically reduced in water-saturated tests. The interrelation of porosity, UCS, UTS and Young's modulus was modelled with good replication of the data. Acceleration of monitored acoustic emission (AE) rates during deformation was assessed by fitting Poisson point process models in a Bayesian framework. An exponential acceleration model closely replicated the tensile strength tests, whilst compressive tests tended to have relatively high early rates of AEs, suggesting failure forecast may be more accurate in tensile regimes, though with shorter warning times. The Gutenberg-Richter b-value has a negative correlation with connected porosity for both UCS and UTS tests which we attribute to different stress intensities caused by differing pore networks. b-value is higher for UTS than UCS, and typically decreases (positive Δb) during tests, with the exception of cataclastic samples in compression. Δb correlates positively with connected porosity in compression, and negatively in tension. Δb using a fixed sampling length may be a more useful metric for monitoring changes in activity at volcanoes than b-value with an arbitrary starting point. Using coda wave interferometry (CWI) we identify velocity reductions during mechanical testing in compression and tension, the magnitude of which is greater in more porous samples in UTS but independent of porosity in UCS, and which scales to both b-value and Δb. Yet, saturation obscures velocity changes caused by evolving material properties, which could mask damage accrual or source migration in water-rich environments such as volcanoes. The results of this study highlight that heterogeneity and anisotropy within a single system not only add uncertainty but also have a defining role in the channelling of fluid flow and localisation of strain that dictate a volcano's hazards and the geophysical indicators we use to interpret them.


1999 ◽  
Vol 41 (6) ◽  
pp. 611-615 ◽  
Author(s):  
A. Wolfenden ◽  
A.C. Anthony ◽  
M. Singh

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 693 ◽  
Author(s):  
Myoungjae Lee ◽  
In-Su Kim ◽  
Young Hoon Moon ◽  
Hyun Sik Yoon ◽  
Chan Hee Park ◽  
...  

Metals for biomedical implant applications require a simultaneous achievement of high strength and low Young’s modulus from the viewpoints of mechanical properties. The American Society for Testing and Materials (ASTM) standards suggest two types of processing methods to confer such a mechanical performance to Ti-13Nb-13Zr alloy: solution treatment (ST) and capability aging (CA). This study elucidated the kinetics of CA process in Ti-13Nb-13Zr alloy. Microstructural evolution and mechanical change were investigated depending on the CA duration from 10 min to 6 h. The initial ST alloy possessed the full α′-martensitic structure, leading to a low strength, low Young’s modulus, and high ductility. Increasing CA duration increased mechanical strength and Young’s modulus in exchange for the reduction of ductility. Such a tendency is attributed to the decomposition of α′ martensite into (α+β) structure, particularly hard α precipitates. Mechanical compatibility (i.e., Young’s modulus compensated with a mechanical strength) of Ti-13Nb-13Zr alloy rarely increased by changing CA duration, suggestive of the intrinsic limit of static heat treatment.


1994 ◽  
Vol 9 (8) ◽  
pp. 2072-2078 ◽  
Author(s):  
J.M. Grow ◽  
R.A. Levy

In this study, nanoindentation is used to determine Young's modulus of chemically vapor deposited films consisting of silicon carbide, silicon nitride, boron carbide, boron nitride, and silicon dioxide. Diethylsilane and ditertiarybutylsilane were used as precursors in the synthesis of the silicon-based material, while triethylamine borane complex was used for the boron-based material. The modulus of these films was observed to be dependent on the processing conditions and resulting composition of the deposits. For the silicon carbide, silicon nitride, boron carbide, and boron nitride films, the carbon content in the films was observed to increase significantly with higher deposition temperatures, resulting in a corresponding decrease in values of Young's modulus. The composition of the silicon dioxide films was near stoichiometry over the investigated deposition temperature range (375–475 °C) with correspondingly small variations in the micromechanical properties. Subsequent annealing of these oxide films resulted in a significant increase in the values of Young's modulus due to hydrogen and moisture removal.


2016 ◽  
Vol 32 (4) ◽  
pp. 411-428 ◽  
Author(s):  
Nor Hasrul Akhmal Ngadiman ◽  
Noordin Mohd Yusof ◽  
Ani Idris ◽  
Denni Kurniawan ◽  
Ehsan Fallahiarezoudar

The use of electrospinning has gained substantial interest in the development of tissue engineering scaffolds due to its ability to produce nanoscale fibers which can mimic the geometry of extracellular tissues. Besides geometry, mechanical property is one of the main elements to be considered when developing tissue engineering scaffolds. In this study, the electrospinning process parameter settings were varied in order to find the optimum setting which can produce electrospun nanofibrous mats with good mechanical properties. Maghemite (γ-Fe2O3) was mixed with poly(vinyl alcohol) and then electrospun to form nanofibers. The five input variable factors involved were nanoparticles content, voltage, flow rate, spinning distance, and rotating speed, while the response variable considered was Young’s modulus. The performance of electrospinning process was systematically screened and optimized using response surface methodology. This work truly demonstrated the sequential nature of designed experimentation. Additionally, the application of various designs of experiment techniques and concepts was also demonstrated. Results revealed that electrospun nanofibrous mats with maximum Young’s modulus (273.51 MPa) was obtained at optimum input settings: 9 v/v% nanoparticle content, 35 kV voltage, 2 mL/h volume flow rate, 8 cm spinning distance, and 3539 r/min of rotating speed. The model was verified successfully by performing confirmation experiments. The nanofibers characterization demonstrated that the nanoparticles were well dispersed inside the nanofibers, and it also showed that the presence of defects on the nanofibers can decrease their mechanical strength. The biocompatibility performance was also evaluated and it was proven that the presence of γ-Fe2O3 enhanced the cell viability and cell growth rate. The developed poly(vinyl alcohol)/γ-Fe2O3 electrospun nanofiber mat has a good potential for tissue engineering scaffolds.


2019 ◽  
Vol 963 ◽  
pp. 305-308
Author(s):  
Jaweb Ben Messaoud ◽  
Jean François Michaud ◽  
Marcin Zielinski ◽  
Daniel Alquier

The silicon carbide cubic polytype (3C-SiC) is a material of choice to fabricate microelectromechanical systems. However, the mechanical properties of 3C-SiC-based devices are severely linked to the stress of the involved 3C-SiC material. Moreover, the stress level can hamper completing microsystems. As a consequence, in this study, we considered the influence of aluminum (Al) doping towards the mechanical properties of 3C-SiC epilayers and demonstrated a noticeable reduction of the Young’s modulus with a high Al incorporation.


2008 ◽  
Vol 23 (6) ◽  
pp. 1785-1796 ◽  
Author(s):  
E. López-Honorato ◽  
P.J. Meadows ◽  
J. Tan ◽  
P. Xiao

Stoichiometric silicon carbide coatings the same as those used in the formation of TRISO (TRistructural ISOtropic) fuel particles were produced by the decomposition of methyltrichlorosilane in hydrogen. Fluidized bed chemical vapor deposition at around 1500 °C, produced SiC with a Young’s modulus of 362 to 399 GPa. In this paper we demonstrate the deposition of stoichiometric silicon carbide coatings with refined microstructure (grain size between 0.4 and 0.8 μm) and enhanced mechanical properties (Young’s modulus of 448 GPa and hardness of 42 GPa) at 1300 °C by the addition of propene. The addition of ethyne, however, had little effect on the deposition of silicon carbide. The effect of deposition temperature and precursor concentration were correlated to changes in the type of molecules participating in the deposition mechanism.


2014 ◽  
Vol 89 ◽  
pp. 109-114
Author(s):  
Jolanta Cyboroń ◽  
Piotr Klimczyk ◽  
Pawel Figiel ◽  
Małgorzata Karolus

The paper presents the results of the High Pressure and High Temperature (HP-HT) sintering and investigation of Ultra High Temperature Ceramics (UHTC) composites of titanium nitride matrix. The aim of this studies were to determine the influence of additives on the ceramic phase composition, microstructure and selected properties. Three different kind of mixtures were prepared. 8 to 22 wt% B4C, SiC and Si3N4were added. Composites were sintered under high-pressure high-temperature conditions (HP-HT) using a Bridgman-type apparatus under pressure about 6 GPa. Materials were sintered at the range of 1450 to 1690 ° C, duration of sintering was 60s. The phase composition, microstructure, and the apparent density, Young's modulus, hardness and fracture toughness KIC (HV), using the Vickers indentation method were examined. Sintered titanium nitride with the 22 wt% silicon carbide participation was characterized the best physical and mechanical properties. For this material the relative density is 99%, the Young's modulus 435 GPa, Vickers hardness 18.3 GPa HV1 and fracture toughness 5.5 MPa∙m1/2.


Sign in / Sign up

Export Citation Format

Share Document