scholarly journals Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Mugahed Amran ◽  
Roman Fediuk ◽  
Gunasekaran Murali ◽  
Nikolai Vatin ◽  
Maria Karelina ◽  
...  

In the last few decades, the demand for cement production increased and caused a massive ecological issue by emitting 8% of the global CO2, as the making of 1 ton of ordinary Portland cement (OPC) emits almost a single ton of CO2. Significant air pollution and damage to human health are associated with the construction and cement industries. Consequently, environmentalists and governments have ordered to strongly control emission rates by using other ecofriendly supplemental cementing materials. Rice husk is a cultivated by-product material, obtained from the rice plant in enormous quantities. With no beneficial use, it is an organic waste material that causes dumping issues. Rice husk has a high silica content that makes it appropriate for use in OPC; burning it generates a high pozzolanic reactive rice husk ash (RHA) for renewable cement-based recyclable material. Using cost-effective and commonly obtainable RHA as mineral fillers in concrete brings plentiful advantages to the technical characteristics of concrete and to ensure a clean environment. With RHA, concrete composites that are robust, highly resistant to aggressive environments, sustainable and economically feasible can be produced. However, the production of sustainable and greener concrete composites also has become a key concern in the construction industries internationally. This article reviews the source, clean production, pozzolanic activity and chemical composition of RHA. This literature review also provides critical reviews on the properties, hardening conditions and behaviors of RHA-based concrete composites, in addition to summarizing the research recent findings, to ultimately produce complete insights into the possible applications of RHA as raw building materials for producing greener concrete composites—all towards industrializing ecofriendly buildings.

2017 ◽  
Vol 751 ◽  
pp. 544-549
Author(s):  
Winai Ouypornprasert ◽  
Narong Traitruengtatsana ◽  
Kong Kamollertvara

The objective of this technical paper was to propose the use of optimum partial replacement of cement by pozzolan of high-silica content i.e. nanosilica, silica fume and rice husk ash. Firstly cement hydration, pozzolanic reactions of pozzolan and stoichiometry were reviewed. Then the optimum fractional replacement of cement by pozzolan based on the complete consumption of calcium hydroxide and the strength activity index (SAI) were formulated and proposed. After that the results of a series of tests of cement mortars were shown to verify the proposed concepts. The applicability for the mass concrete production was demonstrated by prediction of mean values of nonnormal distributions from the corresponding specifications.


Tibuana ◽  
2020 ◽  
Vol 3 (01) ◽  
pp. 47-52
Author(s):  
Yanatra budi Pramana ◽  
M. Amin Pahlevi ◽  
Zhulianto Ashari ◽  
M. Fariz Effendi ◽  
Fibra Gilang Ramadhan

Utilization of rice husks in Indonesia in general is still very limited. Utilization of silica contained in rice husk ash, which has been used, among others, in the manufacture of sodium silicate. Silica compounds themselves can be used in and manufacturing basic materials for electronic and ceramic equipment, glass, rubber, cosmetic products, and pharmaceuticals. The addition of Mg can increase the silica content (SiO2) in rice husk ash. The best results show an effective Mg ratio of Mg addition to increase silica content is 1: 1. produces the highest amount of silica which is 58.12% of the rice husk ash with a size of 140 mesh


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
G. V. Rama Subbarao ◽  
D. Siddartha ◽  
T. Muralikrishna ◽  
K. S. Sailaja ◽  
T. Sowmya

Soil existing at a particular site may not be appropriate for construction of engineering structures. The present study made an attempt to enhance the geotechnical properties of a soil replaced with industrial wastes having pozzolanic value like rice husk ash (RHA) and fly ash (FA). Soil is replaced with RHA in 2%, 4%, and 6% to dry weight of soil. It is observed that soil replaced with 4% RHA is the optimum for the soil used in this study from geotechnical point of view. To know the influence of fly ash, soil is further replaced with 4% FA along with 4% RHA. It is found that results of soil replacement by both RHA and FA proved to be soil modification and not the improvement. Hence, a cost-effective accelerator like lime is used for further replacing the above soil-4%, RHA-4% FA mix. The optimum lime content is found to be 4%.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


2022 ◽  
Vol 1048 ◽  
pp. 403-411
Author(s):  
A. Chithambar Ganesh ◽  
K. Mukilan ◽  
B.P.V. Srikar ◽  
L.V.S. Teja ◽  
K.S.V. Prasad ◽  
...  

Infrastructural developments are inevitable for the developing countries and hence the production of sustainable building materials is promoted worldwide. Sustainable development in the vicinity of tiles is bewildered for more than a decade. Production of conventional tiles such as cement concrete tiles, clay tiles and ceramic tiles is energy intensive approach and levies lot of strain over the adjunct ecosystem. On the other hand there are serious problems related to the disposal of flyash, Rice Husk Ash throughout the world. An approach has been taken to synthesis tiles based on these industrial byproducts as the base materials through Geopolymer technology. In this work, Geopolymer mortar after heat curing is applied as tiles. In this work, Flyash is replaced by Rice Husk Ash in various proportions such as 20, 40, 60, 80 and 100 percent. Tests such as workability, flatness, straightness, perpendicularity, water absorption, modulus of rupture and abrasion are conducted and fair results are obtained. This research also portrays the effect of Rise Husk Ash addition over the flyash based Geopolymer binder in the utility as tiles. The findings of this research work encourages the development of energy efficient tiles using industrial wastes. Keywords: Geopolymer, Rice Husk Ash, Tiles


2019 ◽  
Vol 8 (3) ◽  
pp. 1849-1853

Malaysia has a great potential to reuse the agro-waste and reduce the environmental issues generated from the painting industry and agro-waste and achieve the objective of sustainable development. The objective of this work is to analyse physical effects of different blending ratio of rice husk ash based geopolymer binder (GB) surface coating on the hardness of mild steel and plywood. Geopolymer is an inorganic material produced by activated alkaline solution and aluminosilicate sources. Since Malaysia has been producing abundant of rice husk, this rice husk as the aluminosilicate source is used to form geopolymer. As it is known that filler is one of the combinations in paint including epoxy paint, the rice husk ash which has an abundant of silica content can be a ground-breaking source. Thus, an efficient eco-friendly coating that have a good fire resistance properties are very demanding. An optimum coating was formed by optimizing different ratio of GB with water-based or oil- based paint in term of hardness of surface coated. Based on the Rockwell hardness test, the result showed that 2:1 ratio of water-based coated mild steel plate has the highest Rockwell hardness number of 53.08, which meant the lowest depth of impression of 0.1538mm due to 150kgf major and minor load. This implies that different blending ratios addition of GB on plate surface have an effect on the hardness of mild steel and plywood


2019 ◽  
Vol 3 (1) ◽  
pp. 16-21
Author(s):  
Sri Puji Astuti ◽  
Rina Kurnianingsih

Community service activities has been done with target audiences of tofu tempe craftsmen, farm laborers, and housewife in Lingkung Daye Hamlet, Puyung Village, Jonggat Sub-district. The purpose of this activity were to socialize the importance of the clean environment to the residents of Lingkung Daye Hamlet, to socialize the benefit of rice husk ash to make solid compost with the windraw method, to provide solutions the benefit of compost and marketing prospects. The method applied in this PPM activity were lectured, discussion, question and answer by applying the Applied Group Discuss (AGD) technique involving the community, demonstrations, practices and survey the location of the demonstration plot for the application of compost fertilizer that had been made previously on the agricultural land of tomatoes and chillies. An evaluation was conducted by monitor the success of the activity, using the observation method. The conclusion were 100% of participants understood the material presented, as many as 90% of participants understood how to make solid compost from rice husk ash and as many as 100% of motivated participants looked for alternatives to processing husk ash waste and as many as 80% of participants were motivated to apply and sold the solid compost products.


Sign in / Sign up

Export Citation Format

Share Document