scholarly journals Genetic Structure and Connectivity of the Red Mangrove at Different Geographic Scales through a Complex Transverse Hydrological System from Freshwater to Marine Ecosystems

Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 48 ◽  
Author(s):  
Landy R. Chablé Iuit ◽  
Salima Machkour-M’Rabet ◽  
Julio Espinoza-Ávalos ◽  
Héctor A. Hernández-Arana ◽  
Haydée López-Adame ◽  
...  

Mangrove forests are ecologically and economically valuable resources composed of trees morphologically and physiologically adapted to thrive across a range of habitats. Although, mangrove trees have high dispersion capacity, complexity of hydrological systems may lead to a fine-scale genetic structure (FSGS). The Transverse Coastal Corridor (TCC) is an interesting case of hydrological systems from fresh to marine waters where mangrove forests dominate. We evaluated genetic diversity and structure of Rhizophora mangle across a range of hydrological conditions within the TCC using inter-simple sequence repeat molecular markers. Sampling included four hydrological systems, two localities inside each system, and fringe and dwarf trees. Genetic differentiation was evaluated at local (<100 km) and fine (<10 km) scales through a set of analyses, and genetic diversity was evaluated at all scale levels and between fringe and dwarf physiognomic types. Rhizophora mangle exhibited a high genetic structure at both scales with high genetic diversity. The genetic structure observed among hydrological systems likely reflects the historical dispersion of mangroves, whereas the FSGS reflect contemporary processes such as seed dispersal restriction, habitat fragmentation, and local water flow regimes. A higher genetic diversity for dwarf than for fringe trees and differentiation between both physiognomic types at a fine-scale were observed and discussed.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10327
Author(s):  
Ricardo M. Landínez-García ◽  
Juan Carlos Narváez ◽  
Edna J. Márquez

Prochilodus magdalenae is a freshwater fish endemic to the Colombian Magdalena-Cauca and Caribbean hydrographic basins. The genetic structure patterns of populations of different members of Prochilodus and the historic restocking of its depleted natural populations suggest that P. magdalenae exhibits genetic stocks that coexist and co-migrate throughout the rivers Magdalena, Cauca, Cesar, Sinú and Atrato. To test this hypothesis and explore the levels of genetic diversity and population demography of 725 samples of P. magdalenae from the studied rivers, we developed a set of 11 species-specific microsatellite loci using next-generation sequencing, bioinformatics, and experimental tests of the levels of diversity of the microsatellite loci. The results evidenced that P. magdalenae exhibits high genetic diversity, significant inbreeding coefficient ranging from 0.162 to 0.202, and signs of erosion of the genetic pool. Additionally, the population genetic structure constitutes a mixture of genetic stocks heterogeneously distributed along the studied rivers, and moreover, a highly divergent genetic stock was detected in Chucurí, Puerto Berrío and Palagua that may result from restocking practices. This study provides molecular tools and a wide framework regarding the genetic diversity and structure of P. magdalenae, which is crucial to complement its baseline information, diagnosis and monitoring of populations, and to support the implementation of adequate regulation, management, and conservation policies.


2015 ◽  
Vol 13 ◽  
pp. 17-30 ◽  
Author(s):  
Agnieszka Sutkowska ◽  
Kesara Anamthawat-Jónsson ◽  
Borgthór Magnússon ◽  
Wojciech Bąba ◽  
Józef R. Mitka

Prior to the present study there was limited knowledge about the genetic basis of plant colonization on the 50-year-old island of Surtsey, South Iceland. The aim here was to compare genetic structure of two contrasting species, Festuca rubra (arctic fescue) and Empetrum nigrum (crowberry), which have colonized Surtsey since 1973 and 1993, respectively. Inter-simple sequence repeat (ISSR) markers were used to assess genetic diversity and population structure. Two census periods were compared: 1996-1997 and 2005-2006. Using six ISSR primers, we obtained 103 and 139 discernible DNA fragments from F. rubra and E. nigrum respectively. Although the two species displayed similarly high genetic diversity indices (h = 0.238 and 0.235; I = 0.384 and 0.380, respectively), they differed significantly in their genetic profiles. Festuca was genetically structured at the subpopulation level (FST = 0.034, p = 0.007), whereas Empetrum showed a lack of genetic differentiation. A Bayesian STRUCTURE computation further revealed temporal and spatial genetic structure of the species. The early arrival grass F. rubra has expanded from a local genepool. The population was however initially established from different sources, forming a genetic melting pot on Surtsey. On the other hand, the late arrival shrub E. nigrum probably derived from a common source of immigrants.


2019 ◽  
Vol 97 (3) ◽  
pp. 366 ◽  
Author(s):  
Aurea C. Cortes-Palomec ◽  
Ross A. McCauley ◽  
Ken Oyama

<p><strong>Background: </strong>Epiphytic plants exist within the complex three-dimensional habitat of the tree canopy. This can have a profound effect on patterns of both genetic diversity and structure and may be important for conservation of epiphytic species.<strong> </strong></p><p><strong>Objective:</strong> To evaluate how the epiphytic habit affects fine-scale three-dimensional genetic structure in single canopy tree populations.  </p><p><strong>Studied species:</strong><em> Laelia speciosa</em>, a threatened endemic Mexican epiphytic orchid.<em>         </em></p><p><strong>Study site and dates:</strong> Field sampling occurred during Spring 2006 in the municipality of Caurio de Guadalupe, Michoacán.</p><p><strong>Methods: </strong>All individuals occurring in two trees of <em>Q. deserticola</em> (178 in Tree 1 and 276 in Tree 2) were mapped, assigned to four discrete age classes, and genotyped at six microsatellite loci to understand patterns of genetic diversity and structure. </p><p><strong>Results:</strong> High levels of genetic diversity (polymorphic loci = 100 %, <em>Ho</em> = 0.398 – 0.506) occurred across size classes and trees but were not significantly different between the two trees. Significant fine-scale genetic structure was found in the Juvenile (plants 2-10 years old) and Adults I (11-20 years old) age classes in distances up to 15 cm. This significant structure was larger (up to 25 cm) when all individuals were treated as a single age class.<strong></strong></p><strong>Conclusion: </strong>The distribution and structure of genetic diversity is attributable to the epiphytic habit, particularly localized seed dispersal, limited selfing, and selection of adaptive traits.  Conservation implications related to the sampling for <em>in vitro</em> propagation are given in light of the metapopulation genetic variability maintained within single-tree populations.


2014 ◽  
Vol 300 (7) ◽  
pp. 1671-1681 ◽  
Author(s):  
Rosane Garcia Collevatti ◽  
Raquel Estolano ◽  
Marina Lopes Ribeiro ◽  
Suelen Gonçalves Rabelo ◽  
Elizangela J. Lima ◽  
...  

2019 ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE= 0.61, HO= 0.55, and NA=9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
M. DANIE AL MALIK ◽  
NI PUTU DIAN PERTIWI ◽  
ANDRIANUS SEMBIRING ◽  
NI LUH ASTRIA YUSMALINDA ◽  
ENEX YUNIARTI NINGSIH ◽  
...  

Abstract. Al Malik MD, Pertiwi NPD, Sembiring A, Yusmalinda NLA, Ningsing EY, Astarini IA. 2020. Short Communication: Genetic structure of Longtail Tuna Thunnus tonggol (Bleeker, 1851) in Java Sea, Indonesia. Biodiversitas 21: 3637-3643. Thunnus tonggol (Longtail Tuna) is an economically important fish found in Indonesia waters, however, the information regarding this fish is lacking. Known to be a neritic fish and found in shallow water, Java Sea is one of the ideal habitats for T. tonggol species. Due to high fishing rates activities in Java Sea, a better management plan to ensure the conservation and fisheries sustainability around this area is needed, especially to protect T. tonggol population. In order to complete the Indonesian tuna data, we aim to study the diversity and genetic structure of T. tonggol in Java Sea at three different locations; i.e. Semarang, Banjarmasin, and Jakarta. In this study, population genetic methods with the marker of mitochondrial DNA (mtDNA) control region were used in population structure analysis. A total of 115 specimens were collected from the fish market around the area of study locations and amplified using polymerase chain reaction (PCR) and sequenced using Sanger methods. The result showed genetic diversity (Hd) value of 0.99366, and nucleotide diversity (π) value of 0.01906. Both of these values indicated high genetic diversity. Population analyses using Analysis of Molecular Variance (AMOVA) showed nonsignificant differences between the three populations of study (mixing population), with the ΦST value of 0,00375 (p-value > 0.05). Based on this result, the fisheries management for T. tonggol in Java Sea needs to be managed as one single population management.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


Author(s):  
Dainis Edgars Ruņģis ◽  
Baiba Krivmane

Abstract Changing climatic conditions are transforming the ecological and silvicultural roles of broadleaf tree species in northern Europe. Small-leaved lime (Tilia cordata Mill.) is distributed throughout most of Europe, and is a common broadleaf species in Latvia. This species can tolerate a broad range of environmental and ecological conditions, including temperature, water availability, and soil types. The aim of this study was to assess the genetic diversity and differentiation of Latvian T. cordata populations using nuclear microsatellite markers developed for Tilia platyphyllos. After testing of 15 microsatellite markers, Latvian T. cordata samples were genotyped at 14 micro-satellite loci. Latvian T. cordata populations had high genetic diversity, and were not overly isolated from each other, with moderate gene flow between populations. No highly differentiated populations were identified. Vegetative reproduction was identified in most analysed populations, and almost one-third of analysed individuals are of clonal origin. T. cordata has high timber production potential under the current climatic and growth conditions in Latvia, and therefore this species has potential for use in forestry, as well as playing a significant role in maintaining biodiversity and other ecosystem services.


Sign in / Sign up

Export Citation Format

Share Document