scholarly journals Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 204
Author(s):  
Gergely Csány ◽  
László Hunor Gergely ◽  
Norbert Kiss ◽  
Klára Szalai ◽  
Kende Lőrincz ◽  
...  

A compact handheld skin ultrasound imaging device has been developed that uses co-registered optical and ultrasound imaging to provide diagnostic information about the full skin depth. The aim of the current work is to present the preliminary clinical results of this device. Using additional photographic, dermoscopic and ultrasonic images as reference, the images from the device were assessed in terms of the detectability of the main skin layer boundaries and characteristic image features. Combined optical-ultrasonic recordings of various types of skin lesions (melanoma, basal cell carcinoma, seborrheic keratosis, dermatofibroma, naevus, dermatitis and psoriasis) were taken with the device (N = 53) and compared with images captured with a reference portable skin ultrasound imager. The investigator and two additional independent experts performed the evaluation. The detectability of skin structures was over 90% for the epidermis, the dermis and the lesions. The morphological and echogenicity information observed for the different skin lesions were found consistent with those of the reference ultrasound device and relevant ultrasound images in the literature. The presented device was able to obtain simultaneous in-vivo optical and ultrasound images of various skin lesions. This has the potential for further investigations, including the preoperative planning of skin cancer treatment.

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Daisuke Yamada ◽  
Alperen Değirmenci ◽  
Robert D. Howe

Abstract To characterize the dynamics of internal soft organs and external anatomical structures, this paper presents a system that combines medical ultrasound imaging with an optical tracker and a vertical exciter that imparts whole-body vibrations on seated subjects. The spatial and temporal accuracy of the system was validated using a phantom with calibrated internal structures, resulting in 0.224 mm maximum root-mean-square (r.m.s.) position error and 13 ms maximum synchronization error between sensors. In addition to the dynamics of the head and sternum, stomach dynamics were characterized by extracting the centroid of the stomach from the ultrasound images. The system was used to characterize the subject-specific body dynamics as well as the intrasubject variabilities caused by excitation pattern (frequency up-sweep, down-sweep, and white noise, 1–10 Hz), excitation amplitude (1 and 2 m/s2 r.m.s.), seat compliance (rigid and soft), and stomach filling (empty and 500 mL water). Human subjects experiments (n = 3) yielded preliminary results for the frequency response of the head, sternum, and stomach. The method presented here provides the first detailed in vivo characterization of internal and external human body dynamics. Tissue dynamics characterized by the system can inform design of vehicle structures and adaptive control of seat and suspension systems, as well as validate finite element models for predicting passenger comfort in the early stages of vehicle design.


2002 ◽  
Vol 28 (10) ◽  
pp. 1285-1293 ◽  
Author(s):  
M.A Gomez ◽  
M Defontaine ◽  
B Giraudeau ◽  
E Camus ◽  
L Colin ◽  
...  

2021 ◽  
Author(s):  
Hailong He ◽  
Christine Schoenmann ◽  
Mathias Schwarz ◽  
Benedikt Hindelang ◽  
Andrei Bereznhoi ◽  
...  

The development and progression of melanoma tumors is associated with angiogenesis, manifesting as changes in vessel density, morphology, and architecture that may extend through the entire skin depth. Three-dimensional imaging of vascular characteristics in skin lesions could allow diagnostic insights not available to the conventional visual inspection. Raster-scan optoacoustic mesoscopy (RSOM) has emerged as a unique modality to image microvasculature through the entire skin depth with resolutions of tens of micrometers, offering new possibilities to assess angiogenetic processes. However, current RSOM implementations are slow, exacerbating motion artifacts and reducing image quality, particularly when imaging melanoma lesions that often appear on the upper torso where breathing motion is strongest. To visualize for the first time melanoma vasculature in humans, in high-resolution, we accelerated RSOM scanning using an illumination scheme that is co-axial with a high-sensitivity ultrasound detector path, yielding 15 second single-breath-hold scans that minimize motion artifacts. Applied to 10 melanomas and 10 benign nevi in humans, we demonstrate visualization of microvasculature with performance never before shown in vivo. We show marked differences between malignant and benign lesions, supporting the possibility to use vasculature as a biomarker for lesion characterization. The study points to promising clinical potential for Fast-RSOM (FRSOM) as a three dimensional visualization method that can enable the complete assessment of microvascular parameters of melanoma and improve diagnostics.


Author(s):  
Ahmed Sayed ◽  
Ahmed Mahmoud ◽  
Eros Chaves ◽  
Richard Crout ◽  
Kevin Sivaneri ◽  
...  

Gingivitis is the most common gingival inflammation in the oral cavity, and the most prevalent periodontal disease affecting 90% of the population in all age groups. Recently, a few research groups have investigated the possibility of using ultrasound in dentistry, particularly in diagnosing bony destruction in the more severe form of periodontal disease called periodontitis. This work investigates the feasibility of using ultrasound imaging to quantitatively assess gingival tissue inflammation. Signal and image processing of ultrasound data have been performed to quantitatively assess gingival tissue. A number of gingival scans were conducted in vitro to render ultrasound images of high-spatial and contrast resolutions. For each sample the B-mode images were matched with almost the same slices in histology. Results show that ultrasound scans for tissues with gingivitis exhibited low intensity of reflections (hypo echoic) at the inflamed tissues, while healthy dense epithelium layers exhibited higher reflections (hyper echoic). Histological diagnosis revealed good agreement with the ultrasound results indicating the usefulness of such ultrasound imaging in diagnosing gingivitis. In addition, a new design for an intraoral linear array ultrasound probe is demonstrated and utilized in our clinic in vivo. Analysis of the echogenicity patterns of the resultant images demonstrates the potential of using such a new probe in gingival health assessment, which would be feasible and clinical relevant for patient evaluations clinically.


1979 ◽  
Vol 42 (03) ◽  
pp. 825-831 ◽  
Author(s):  
Jean-Pierre Allain

SummaryIn order to determine the correlation between different doses of F. VIII and their clinical effect,. 70 children with severe hemophilia A were studied after treatment with single doses of cryoprecipitate. The relationship between plasma F. VIII levels or doses calculated in u/ kg of body weight and clinical results followed an exponential curve. Plasma F. VIII levels of 0.35 and 0.53 u/ml corresponded to 95 and 99% satisfactory treatment, respectively. Similar clinical results were obtained with 20 and 31 u/kg. When the in vivo recovery of F. VIII after lyophilized cryoprecipitate was 0.015 u/ml for each u/kg injected, plasma F. VIII levels of 0.30 and 0.47 u/ml respectively were achieved. Since home treatment is largely based on single infusions of F. VIII, it is suggested that moderate and severe hemorrhages be treated with a dose which will provide a plasma F. VIII level of 0.5 u/ml.


2020 ◽  
Vol 15 (3) ◽  
pp. 194-208
Author(s):  
Pravin Kumar ◽  
Dinesh Kumar Sharma ◽  
Mahendra Singh Ashawat

Atopic Dermatitis (AD) is a prolonged reverting skin ailment with characteristically distributed skin lesions. In the previous decades, researchers had shown a marked interest in AD due to its increased prevalence in developed countries. Although different strategies including biological and immune modulators are available for the treatment of AD, each has certain limitations. The researchers had shown considerable interest in the management of AD with herbal medicines. The establishment of herbal drugs for AD might eliminate local as well as systemic adverse effects associated with long term use of corticosteroids and also higher cost of therapy with biological drugs. The present review discusses the traditional East Asian herbal medicines and scientific data related to newer herbal extracts or compositions for the treatment of AD. In vivo animal models and in vitro cell cultures, investigated with herbal medicines to establish a possible role in AD treatment, have also been discussed in the paper. The paper also highlights the role of certain new approaches, i.e. pharmacopuncture, a combination of allopathic and herbal medicines; and novel carriers (liposomes, cubosomes) for herbal drugs on atopic skin. In conclusion, herbal medicines can be a better and safe, complementary and alternative treatment option for AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi Powers ◽  
Raymond Chang ◽  
Justin Torello ◽  
Rhonda Silva ◽  
Yannick Cadoret ◽  
...  

AbstractEchocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.


2021 ◽  
Vol 22 (2) ◽  
pp. 931
Author(s):  
Jihyun Lee ◽  
Yujin Jung ◽  
Seo won Jeong ◽  
Ga Hee Jeong ◽  
Gue Tae Moon ◽  
...  

The Hippo signaling pathway plays a key role in regulating organ size and tissue homeostasis. Hippo and two of its main effectors, yes-associated protein (YAP) and WWTR1 (WW domain-containing transcription regulator 1, commonly listed as TAZ), play critical roles in angiogenesis. This study investigated the role of the Hippo signaling pathway in the pathogenesis of rosacea. We performed immunohistochemical analyses to compare the expression levels of YAP and TAZ between rosacea skin and normal skin in humans. Furthermore, we used a rosacea-like BALB/c mouse model induced by LL-37 injections to determine the roles of YAP and TAZ in rosacea in vivo. We found that the expression levels of YAP and TAZ were upregulated in patients with rosacea. In the rosacea-like mouse model, we observed that the clinical features of rosacea, including telangiectasia and erythema, improved after the injection of a YAP/TAZ inhibitor. Additionally, treatment with a YAP/TAZ inhibitor reduced the expression levels of YAP and TAZ and diminished vascular endothelial growth factor (VEGF) immunoreactivity in the rosacea-like mouse model. Our findings suggest that YAP/TAZ inhibitors can attenuate angiogenesis associated with the pathogenesis of rosacea and that both YAP and TAZ are potential therapeutic targets for patients with rosacea.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Yue Li ◽  
QingQing Leng ◽  
XianLun Pang ◽  
Huan Shi ◽  
YanLin Liu ◽  
...  

Abstract Dermal injury, including trauma, surgical incisions, and burns, remain the most prevalent socio-economical health care issue in the clinic. Nanomedicine represents a reliable administration strategy that can promote the healing of skin lesions, but the lack of effective drug delivery methods can limit its effectiveness. In this study, we developed a novel nano-drug delivery system to treat skin defects through spraying. We prepared curcumin-loaded chitosan nanoparticles modified with epidermal growth factor (EGF) to develop an aqueous EGF-modified spray (EGF@CCN) for the treatment of dermal wounds. In vitro assays showed that the EGF@CCN displayed low cytotoxicity, and that curcumin was continuously and slowly released from the EGF@CCN. In vivo efficacy on wound healing was then evaluated using full-thickness dermal defect models in Wistar rats, showing that the EGF@CCN had significant advantages in promoting wound healing. On day 12 post-operation, skin defects in the rats of the EGF@CCN group were almost completely restored. These effects were related to the activity of curcumin and EGF on skin healing, and the high compatibility of the nano formulation. We therefore conclude that the prepared nano-scaled EGF@CCN spray represents a promising strategy for the treatment of dermal wounds.


Sign in / Sign up

Export Citation Format

Share Document