scholarly journals Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy

Diseases ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 91
Author(s):  
Lalit Pukhrambam Singh ◽  
Takhellambam S. Devi

Chronic hyperglycemia-induced thioredoxin-interacting protein (TXNIP) expression, associated oxidative/nitrosative stress (ROS/RNS), and mitochondrial dysfunction play critical roles in the etiology of diabetic retinopathy (DR). However, there is no effective drug treatment to prevent or slow down the progression of DR. The purpose of this study is to examine if a combination drug treatment targeting TXNIP and the mitochondria-lysosome pathway prevents high glucose-induced mitochondrial stress and mitophagic flux in retinal Müller glial cells in culture, relevant to DR. We show that diabetes induces TXNIP expression, redox stress, and Müller glia activation (gliosis) in rat retinas when compared to non-diabetic rat retinas. Furthermore, high glucose (HG, 25 mM versus low glucose, LG 5.5 mM) also induces TXNIP expression and mitochondrial stress in a rat retinal Müller cell line, rMC1, in in vitro cultures. Additionally, we develop a mitochondria-targeted mCherry and EGFP probe tagged with two tandem COX8a mitochondrial target sequences (adenovirus-CMV-2×mt8a-CG) to examine mitophagic flux in rMC1. A triple drug combination treatment was applied using TXNIP-IN1 (which inhibits TXNIP interaction with thioredoxin), Mito-Tempo (mitochondrial anti-oxidant), and ML-SA1 (lysosome targeted activator of transient calcium channel MCOLN1/TRPML1 and of transcription factor TFEB) to study the mitochondrial–lysosomal axis dysregulation. We found that HG induces TXNIP expression, redox stress, and mitophagic flux in rMC1 versus LG. Treatment with the triple drug combination prevents mitophagic flux and restores transcription factor TFEB and PGC1α nuclear localization under HG, which is critical for lysosome biosynthesis and mitogenesis, respectively. Our results demonstrate that 2×mt8a-CG is a suitable probe for monitoring mitophagic flux, both in live and fixed cells in in vitro experiments, which may also be applicable to in vivo animal studies, and that the triple drug combination treatment has the potential for preventing retinal injury and disease progression in diabetes.

2021 ◽  
Author(s):  
Jonah Larkins-Ford ◽  
Talia Greenstein ◽  
Nhi Van ◽  
Yonatan N. Degefu ◽  
Michaela C. Olson ◽  
...  

AbstractA lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. Variation in Mycobacterium tuberculosis drug response is created by the differing microenvironments in lesions, which generate different bacterial drug susceptibilities. To better realize the potential of combination therapy to shorten treatment duration, multidrug therapy design should deliberately explore the vast combination space. We face a significant scaling challenge in making systematic drug combination measurements because it is not practical to use animal models for comprehensive drug combination studies, nor are there well-validated high-throughput in vitro models that predict animal outcomes. We hypothesized that we could both prioritize combination therapies and quantify the predictive power of various in vitro models for drug development using a dataset of drug combination dose responses measured in multiple in vitro models. We systematically measured M. tuberculosis response to all 2- and 3-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments. Applying machine learning to this comprehensive dataset, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse. We trained classifiers on multiple mouse models and identified ensembles of in vitro models that best describe in vivo treatment outcomes. Furthermore, we found that combination synergies are less important for predicting outcome than metrics of potency. Here, we map a path forward to rationally prioritize combinations for animal and clinical studies using systematic drug combination measurements with validated in vitro models. Our pipeline is generalizable to other difficult-to-treat diseases requiring combination therapies.One Sentence SummarySignatures of in vitro potency and drug interaction measurements predict combination therapy outcomes in mouse models of tuberculosis.


2019 ◽  
Vol 17 (1) ◽  
pp. 147916411987842 ◽  
Author(s):  
Elena Beltramo ◽  
Aurora Mazzeo ◽  
Tatiana Lopatina ◽  
Marina Trento ◽  
Massimo Porta

Thiamine prevents high glucose-induced damage in microvasculature, and progression of retinopathy and nephropathy in diabetic animals. Impaired thiamine availability causes renal damage in diabetic patients. Two single-nucleotide polymorphisms in SLC19A3 locus encoding for thiamine transporter 2 are associated with absent/minimal diabetic retinopathy and nephropathy despite long-term type 1 diabetes. We investigated the involvement of thiamine transporter 1 and thiamine transporter 2, and their transcription factor specificity protein 1, in high glucose-induced damage and altered thiamine availability in cells of the inner blood–retinal barrier. Human endothelial cells, pericytes and Müller cells were exposed to hyperglycaemic-like conditions and/or thiamine deficiency/over-supplementation in single/co-cultures. Expression and localization of thiamine transporter 1, thiamine transporter 2 and transcription factor specificity protein 1 were evaluated together with intracellular thiamine concentration, transketolase activity and permeability to thiamine. The effects of thiamine depletion on cell function (viability, apoptosis and migration) were also addressed. Thiamine transporter 2 and transcription factor specificity protein 1 expression were modulated by hyperglycaemic-like conditions. Transketolase activity, intracellular thiamine and permeability to thiamine were decreased in cells cultured in thiamine deficiency, and in pericytes in hyperglycaemic-like conditions. Thiamine depletion reduced cell viability and proliferation, while thiamine over-supplementation compensated for thiamine transporter 2 reduction by restoring thiamine uptake and transketolase activity. High glucose and reduced thiamine determine impairment in thiamine transport inside retinal cells and through the inner blood–retinal barrier. Thiamine transporter 2 modulation in our cell models suggests its major role in thiamine transport in retinal cells and its involvement in high glucose-induced damage and impaired thiamine availability.


2021 ◽  
Vol 22 (21) ◽  
pp. 11876
Author(s):  
Eimear M. Byrne ◽  
María Llorián-Salvador ◽  
Timothy J. Lyons ◽  
Mei Chen ◽  
Heping Xu

We have previously reported that inhibition of the Janus kinase 1 (JAK1) signaling ameliorates IL-17A-mediated blood-retinal barrier (BRB) dysfunction. Higher levels of IL-17A have been observed in the blood and intraocular fluids in patients with diabetic retinopathy (DR), in particular those with diabetic macular oedema. This study aimed to understand whether JAK1 inhibition could prevent BRB dysfunction in db/db mice, a model of type 2 diabetes (T2D). An in vitro study showed that high glucose treatment disrupted the junctional distribution of claudin-5 in bEnd3 cells and ZO-1 in ARPE19 cells and that tofacitinib citrate treatment prevented high glucose-mediated tight junction disruption. Albumin leakage, accompanied by increased levels of the phosphorylated form of JAK1 (pJAK1), was observed in three-month-old db/db mice. Treatment of two-and-a-half-month-old db/db mice with tofacitinib citrate for two weeks significantly reduced retinal albumin leakage and reduced pJAK1 expression. pJAK1 expression was also detected in human DR retina. Our results suggest that JAK1 inhibition can ameliorate BRB dysfunction in T2D, and JAK1 inhibitors such as tofacitinib citrate may be re-purposed for the management of diabetic macular oedema.


2019 ◽  
Author(s):  
Yanli Liu ◽  
Yarong Zheng ◽  
Yekai Zhou ◽  
Yi Liu ◽  
Mengjuan Xie ◽  
...  

Abstract Background: To investigate the expression and significance of mechanistic target of rapamycin complex 1(mTORC1) in diabetic retinopathy(DR), and to find new targets and new methods for the treatment of DR.Methods: A DR rat model was prepared by general feeding combined with intraperitoneal injection of 10% streptozotocin (60 mg/kg). The rats were randomly divided into a control group (NDM group) and diabetes group (DM group).Three months later,the degrees of retinopathy were determined using hematoxylin and eosin staining,and the levels of p-S6, VEGF, and PEDF proteins were detected by immunohistochemistry and western blotting. Human retinal capillary endothelial cells (HRCECs) were cultured in high glucose conditions,then treated with rapamycin or transfected with siTSC1.The protein levels of p-S6 were assessed by western blotting. The 5-ethynyl-2´-deoxyuridine assay was used to detect cell proliferation, and the Transwell assay was used to detect cell migration.Results: A DM rat model was successfully developed. The expressions of p-S6 and VEGF proteins were significantly increased in the DM group (p < 0.05), and the expression of PEDF protein was significantly decreased compared with the control group (p < 0.05). In vitro,the p-S6 protein in high glucose(HG) induced HRCECs was increased compared with the normal control (p < 0.05), and cell proliferation and migration were increased compared with the normal glucose(NG) group (p < 0.05). After transfection with siTSC1 to activate mTORC1,the expression of p-S6 was increased,as well as cell proliferation and migration.In contrast rapamycin decreased p-S6 expression in HG induced HRCECs, as well as decrased proliferation and migration (p < 0.05).Conclusion: The mTORC1 played an important role in DR. After activation, mTORC1 induced expression of the p-S6 protein, regulated the expressions of VEGF and PEDF proteins, and changed the proliferation and migration of endothelial cells.The mTORC1 can therefore be used as a new target,as well as in the treatment of DR.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2616-2616
Author(s):  
Subir Roy Chowdhury ◽  
Cheryl Peltier ◽  
Eileen M. McMillan-Ward ◽  
Ryan Saleh ◽  
Tricia Choquette ◽  
...  

Abstract Introduction: Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adults. Despite significant improvement in the treatment of CLL, drug resistance is emerging when using the single agents ibrutinib or venetoclax. To achieve greater depth of response, combination treatments are being used to eradicate disease. Altered mitochondrial metabolism is a key factor in CLL survival. In order to gain insights into the underlying biology of a promising drug combination treatment, we investigated the combination of venetoclax and ibrutinib on mitochondrial function as well as the B-cell receptor (BCR), apoptotic and adenosine monophosphate activated protein kinase /silent information regulator 1 / peroxisome proliferator-activated receptor-coactivator-1α (AMPK/SIRT1/PGC-1α) signaling pathways in CLL cells. We also evaluated a proposed mechanism of resistance using interleukin-4 (IL-4) to demonstrate the role of a nicotinamide phosphoribosyltransferase (NAMPT) specific inhibitor, FK866, in order to overcome resistance in vitro. Methods: Freshly isolated primary B-cells from CLL patients were treated with venetoclax, ibrutinib or their combination in a dose- and -time responsive fashion. CLL cells were also treated with IL-4 and FK866 in the presence or the absence of the combination treatment. Flow cytometry (Novocyte) was used to assess cell viability, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). Mitochondrial respiration rates and specific substrate-dependent respiration of individual complexes of the respiratory chain were measured by respirometry (Orobooros O2k oxygraph) and ATP levels by luminometry (Lmax Luminometer, Molecular Devices). Cellular, mitochondrial, and lysosomal morphology was evaluated by Philips CM10 electron microscope and Olympus BX51 fluorescent microscope. Changes in protein levels of signaling pathways were detected by immunoblotting. Results: Each single agent venetoclax or ibrutinib reduced mitochondrial respiration profiles in CLL cells in vitro. The combined effect of these drugs on the respiration profiles, ATP, MMP, ROS and cell viability was more profound than with each agent alone. Proteins involved in 1. BCR [Bruton's tyrosine kinase (BTK); serine/threonine-specific protein kinase (AKT); phospholipase Cɣ2 (PLCɣ2) and extracellular signal-regulated kinase (ERK)], 2. Apoptotic B-cell lymphoma 2 (BCL-2); myeloid cell leukemia-1 (MCL-1) and 3. AMPK/SIRT1/PGC-1α signaling in the venetoclax and ibrutinib combination treated samples were significantly reduced when compared to DMSO and each single agent. AMPK/SIRT1/PGC-1α regulated transcription factors responsible for mitochondrial biogenesis [nuclear respiratory factor (NRF1 and NRF2)] and mitochondrial dynamics related proteins [mitofusin 2 (MFN2) and dynamin-related protein 1 (DRP1)] were preferentially downregulated by the combination treatment. These effects are seen in the morphological changes, as visualized by transmission electron microscopy demonstrating swelling of mitochondria (venetoclax) and vacuole formation (ibrutinib) in addition to the formation of multi-vesicular bodies in the combination. We also validated the impact of the mitochondria and lysosomes using immunofluorescence. In the presence of IL-4 (a secreted cytokine used to activate the BCR), the effects of the combination were negated by the addition of the NAMPT inhibitor, FK866. FK866 also preferentially decreased mitochondrial respiration rates in the presence of Complex I specific substrates and sustained this inhibition in all FK866 containing conditions regardless of IL-4. Conclusions: The combined effect of venetoclax and ibrutinib to target mitochondrial metabolism via the AMPK/SIRT1/PGC-1α signaling pathway provides a rationale for this drug combination treatment. The use of IL-4 identifies a potential path of resistance that can be overcome by NAMPT inhibition by directly targeting Complex I of the electron transport chain of the mitochondria. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lin Ye ◽  
Hui Guo ◽  
Yuan Wang ◽  
Yun Peng ◽  
Yongxin Zhang ◽  
...  

Diabetic retinopathy (DR) is a frequently occurring microvascular complication induced by long-term hyperglycemia. Pericyte-endothelial cell crosstalk is critical for maintaining vascular homeostasis and remodeling; however, the molecular mechanism underlying that crosstalk remains unknown. In this study, we explored the crosstalk that occurs between endothelial cells and pericytes in response to diabetic retinopathy. Pericytes were stimulated with cobalt chloride (CoCl2) to activate the HIF pathway. Hypoxia-stimulated pericytes were cocultured with high glucose- (HG-) induced endotheliocytes. Cell viability was determined using the CCK-8 assay. Western blot studies were performed to detect the expression of proteins associated with apoptosis, hypoxia, and inflammation. ELISA assays were conducted to analyze the release of IL-1β and IL-18. We performed a circRNA microarray analysis of exosomal RNAs expressed under normoxic or hypoxic conditions. A FISH assay was performed to identify the location of circEhmt1 in pericytes. Chromatin immunoprecipitation (CHIP) was used to identify the specific DNA-binding site on the NFIA-NLRP3 complex. We found that pericyte survival was negatively correlated with the angiogenesis activity of endotheliocytes. We also found that hypoxia upregulated circEhmt1 expression in pericytes, and circEhmt1 could be transferred from pericytes to endotheliocytes via exosomes. Moreover, circEhmt1 overexpression protected endotheliocytes against HG-induced injury in vitro. Mechanistically, circEhmt1 was highly expressed in the nucleus of pericytes and could upregulate the levels of NFIA (a transcription factor) to suppress NLRP3-mediated inflammasome formation. Our study revealed a critical role for circEhmt1-mediated NFIA/NLRP3 signaling in retinal microvascular dysfunction and suggests that signaling pathway as a target for treating DR.


2018 ◽  
Vol 15 (3) ◽  
pp. 204-213 ◽  
Author(s):  
Xiu-juan Li

Background: The role of long non-coding RNA in diabetic retinopathy, a serious complication of diabetes mellitus, has attracted increasing attention in recent years. The purpose of this study was to explore whether long non-coding RNA nuclear paraspeckle assembly transcript 1 was involved in the context of diabetic retinopathy and its underlying mechanisms. Results: Our results revealed that nuclear paraspeckle assembly transcript 1 was significantly downregulated in the retina of diabetes mellitus rats. Meanwhile, miR-497 was significantly increased in diabetes mellitus rats’ retina and high glucose–treated Müller cells, but brain-derived neurotrophic factor was increased. We also found that high glucose–induced apoptosis of Müller cells was accompanied by the significant downregulation of nuclear paraspeckle assembly transcript 1 in vitro. Further study demonstrated that high glucose–promoted Müller cells apoptosis through downregulating nuclear paraspeckle assembly transcript 1 and downregulated nuclear paraspeckle assembly transcript 1 mediated this effect via negative regulating miR-497. Moreover, brain-derived neurotrophic factor was negatively regulated by miR-497 and associated with the apoptosis of Müller cells under high glucose. Conclusion: Our results suggested that under diabetic conditions, downregulated nuclear paraspeckle assembly transcript 1 decreased the expression of brain-derived neurotrophic factor through elevating miR-497, thereby promoting Müller cells apoptosis and aggravating diabetic retinopathy.


2020 ◽  
Vol 21 (5) ◽  
pp. 1636 ◽  
Author(s):  
Claudia G. Fresta ◽  
Annamaria Fidilio ◽  
Giuseppe Caruso ◽  
Filippo Caraci ◽  
Frank J. Giblin ◽  
...  

Blood–retinal barrier (BRB) dysfunction represents one of the most significant changes occurring during diabetic retinopathy. We set up a high-reproducible human-based in vitro BRB model using retinal pericytes, retinal astrocytes, and retinal endothelial cells in order to replicate the human in vivo environment with the same numerical ratio and layer order. Our findings showed that high glucose exposure elicited BRB breakdown, enhanced permeability, and reduced the levels of junction proteins such as ZO-1 and VE-cadherin. Furthermore, an increased expression of pro-inflammatory mediators (IL-1β, IL-6) and oxidative stress-related enzymes (iNOS, Nox2) along with an increased production of reactive oxygen species were observed in our triple co-culture paradigm. Finally, we found an activation of immune response-regulating signaling pathways (Nrf2 and HO-1). In conclusion, the present model mimics the closest human in vivo milieu, providing a valuable tool to study the impact of high glucose in the retina and to develop novel molecules with potential effect on diabetic retinopathy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Shengyu Wu ◽  
Xiaolu Zhu ◽  
Biechuan Guo ◽  
Tian Zheng ◽  
Jiangbo Ren ◽  
...  

Background. Endoplasmic reticulum stress (ERS) in the retinal Müller cells is a key factor contributing to the retinal inflammation and vascular leakage in diabetic retinopathy (DR). This study was to investigate the underlying mechanisms through which the 3 main unfolded protein response (UPR) pathways regulate ERS and to examine the expression levels of vascular endothelial growth factor (VEGF) in Müller cells in vitro. Methods. Rat Müller cell lines were stimulated with high glucose to mimic a diabetic environment in vitro. PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) were downregulated or upregulated with shRNA or overexpression plasmids. The transfected Müller cells were cultivated in high glucose medium for 48 hours. Expression of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), X-box binding protein 1 (XBP1), ATF6, and VEGF was examined with immunofluorescence and western blot. Results. Our data indicated that ERS was found in both high glucose and osmotic control groups. Overexpression or downregulation of UPR pathways effectively increased or reduced the production of GRP78, ATF4, XBP1, ATF6, and VEGF, respectively. These 3 signaling pathways had similar regulatory effects on VEGF. Conclusion. The 3 UPR-mediated inflammatory pathways were dependent on each other. Inhibition any of these signaling pathways in UPR might be a potential therapeutic target for DR.


Sign in / Sign up

Export Citation Format

Share Document