scholarly journals What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 459 ◽  
Author(s):  
Larissa Albantakis ◽  
William Marshall ◽  
Erik Hoel ◽  
Giulio Tononi

Actual causation is concerned with the question: “What caused what?” Consider a transition between two states within a system of interacting elements, such as an artificial neural network, or a biological brain circuit. Which combination of synapses caused the neuron to fire? Which image features caused the classifier to misinterpret the picture? Even detailed knowledge of the system’s causal network, its elements, their states, connectivity, and dynamics does not automatically provide a straightforward answer to the “what caused what?” question. Counterfactual accounts of actual causation, based on graphical models paired with system interventions, have demonstrated initial success in addressing specific problem cases, in line with intuitive causal judgments. Here, we start from a set of basic requirements for causation (realization, composition, information, integration, and exclusion) and develop a rigorous, quantitative account of actual causation, that is generally applicable to discrete dynamical systems. We present a formal framework to evaluate these causal requirements based on system interventions and partitions, which considers all counterfactuals of a state transition. This framework is used to provide a complete causal account of the transition by identifying and quantifying the strength of all actual causes and effects linking the two consecutive system states. Finally, we examine several exemplary cases and paradoxes of causation and show that they can be illuminated by the proposed framework for quantifying actual causation.

Author(s):  
Martin V. Butz ◽  
Esther F. Kutter

While bottom-up visual processing is important, the brain integrates this information with top-down, generative expectations from very early on in the visual processing hierarchy. Indeed, our brain should not be viewed as a classification system, but rather as a generative system, which perceives something by integrating sensory evidence with the available, learned, predictive knowledge about that thing. The involved generative models continuously produce expectations over time, across space, and from abstracted encodings to more concrete encodings. Bayesian information processing is the key to understand how information integration must work computationally – at least in approximation – also in the brain. Bayesian networks in the form of graphical models allow the modularization of information and the factorization of interactions, which can strongly improve the efficiency of generative models. The resulting generative models essentially produce state estimations in the form of probability densities, which are very well-suited to integrate multiple sources of information, including top-down and bottom-up ones. A hierarchical neural visual processing architecture illustrates this point even further. Finally, some well-known visual illusions are shown and the perceptions are explained by means of generative, information integrating, perceptual processes, which in all cases combine top-down prior knowledge and expectations about objects and environments with the available, bottom-up visual information.


2020 ◽  
Author(s):  
Jari Järvi ◽  
Benjamin Alldritt ◽  
Ondřej Krejčí ◽  
Milica Todorovic ◽  
Peter Liljeroth ◽  
...  

Abstract Controlling the properties of organic/inorganic materials requires detailed knowledge of their molecular adsorption geometries. This is often unattainable, even with current state-of-the-art tools. Visualizing the structure of complex non-planar adsorbates with atomic force microscopy (AFM) is challenging, and identifying it computationally is intractable with conventional structure search. In a fresh approach, we propose to integrate cross-disciplinary tools for a robust and automated identification of 3D adsorbate configurations. We employ Bayesian optimization with first-principles simulations for accurate and unbiased structure inference of multiple adsorbates. The corresponding AFM simulations then allow us to fingerprint adsorbate structures appearing in AFM experimental images. In the instance of bulky (1S)-camphor adsorbed on the Cu(111) surface, we found three matching AFM image contrasts, which allowed us to correlate experimental image features to distinct cases of molecular adsorption.


2021 ◽  
Author(s):  
Jari Järvi ◽  
Benjamin Alldritt ◽  
Ondřej Krejčí ◽  
Milica Todorović ◽  
Peter Liljeroth ◽  
...  

Abstract Controlling the properties of organic/inorganic materials requires detailed knowledge of their molecular adsorption geometries. This is often unattainable, even with current state-of-the-art tools. Visualizing the structure of complex non-planar adsorbates with atomic force microscopy (AFM) is challenging, and identifying it computationally is intractable with conventional structure search. In a fresh approach, we propose to integrate cross-disciplinary tools for a robust and automated identification of 3D adsorbate configurations. We employ Bayesian optimization with first-principles simulations for accurate and unbiased structure inference of multiple adsorbates. The corresponding AFM simulations then allow us to fingerprint adsorbate structures appearing in AFM experimental images. In the instance of bulky (1S)-camphor adsorbed on the Cu(111) surface, we found three matching AFM image contrasts, which allowed us to correlate experimental image features to distinct cases of molecular adsorption.


2021 ◽  
Author(s):  
Michael Chertkov ◽  
Ruby Abrams ◽  
Amir Mohammad Esmaieeli Sikaroudi ◽  
Mikhail Krechetov ◽  
Conrad NP Slagle ◽  
...  

Both COVID-19 and novel pandemics challenge those of us within the modeling community, specifically in establishing suitable relations between lifecycles, scales, and existing methods. Herein we demonstrate transitions between models in space/time, individual-to-community, county-to-city, along with models for the trace beginning with exposure, then to symptom manifest, then to community transmission. To that end, we leverage publicly available data to compose a chain of Graphical Models (GMs) for predicting infection rates across communities, space, and time. We'll anchor our GMs against the more expensive yet state-of-the-art Agent-Based Models (ABMs). Insight obtained from designing novel GMs calibrated to ABMs furnishes reduced, yet reliable surrogates for the end-to-end public health challenge of community contact tracing and transmission. Further, this novel research transcends and synergizes information integration and informatics, leading to an advance in the science of GMs. Cognizance into the data lifecycle using properly coarse-grained modeling will broaden the toolkit available to public health specialists, and hopefully empower governments and health agencies, here and abroad, in addressing the profound challenges in disease and vaccination campaigns confronting us by COVID and future pandemics. In this proof of principle study, focusing on the GM methodology development, we show, first, how static GM of the Ising model type (characterised by pair-wise interaction between nodes related to traffic and communications between nodes representing communities, or census tracts within a given city, and with local infection bias) emerge from a dynamic GM of the Independent Cascade type, introduced and studied in Computer and Networks sciences mainly in the context of the spread of social influences. Second, we formulate the problem of inference in epidemiology as inference problems in the Ising model setting. Specifically, we pose the challenge of computing Conditional A-posteriori Level of Infection (CALI), which provides a quantitative answer to the questions: What is the probability that a given node in the GM (given census tract within the city) becomes infected in the result of injection of the infection at another node, e.g. due to arrival of a super-spreader agent or occurrence of the super-spreader event in the area. To answer the question exactly is not feasible for any realistic size (larger than 30-50 nodes) model. We therefore adopt and develop approximate inference techniques, of the variational and variable elimination types, developed in the GM literature. To demonstrate utility of the methodology, which seems new for the public health application, we build a 123-node model of Seattle, as well as its 10-node and 20-node coarse-grained variants, and then conduct the proof of principles experimental studies. The experiments on the coarse-grained models have helped us to validate the approximate inference by juxtaposing it to the exact inference. The experiments also lead to discovery of interesting and most probably universal phenomena. In particular, we observe (a) a strong sensitivity of CALI to the location of the initial infection, and (b) strong alignment of the resulting infection probability (values of CALI) observed at different nodes in the regimes of moderate interaction between the nodes. We then speculate how these, and other observations drawn from the synthetic experiments, can be extended to a more realistic, data driven setting of actual operation importance. We conclude the manuscript with an extensive discussion of how the methodology should be developed further, both at the level of devising realistic GMs from observational data (and also enhancing it with microscopic ABM modeling and simulations) and also regarding utilisation of the GM inference methodology for more complex problems of the pandemic mitigation and control.


Author(s):  
J.R. Parsons ◽  
C.W. Hoelke

The direct imaging of a crystal lattice has intrigued electron microscopists for many years. What is of interest, of course, is the way in which defects perturb their atomic regularity. There are problems, however, when one wishes to relate aperiodic image features to structural aspects of crystalline defects. If the defect is inclined to the foil plane and if, as is the case with present 100 kV transmission electron microscopes, the objective lens is not perfect, then terminating fringes and fringe bending seen in the image cannot be related in a simple way to lattice plane geometry in the specimen (1).The purpose of the present work was to devise an experimental test which could be used to confirm, or not, the existence of a one-to-one correspondence between lattice image and specimen structure over the desired range of specimen spacings. Through a study of computed images the following test emerged.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
W. Krakow ◽  
D. A. Smith

The successful determination of the atomic structure of [110] tilt boundaries in Au stems from the investigation of microscope performance at intermediate accelerating voltages (200 and 400kV) as well as a detailed understanding of how grain boundary image features depend on dynamical diffraction processes variation with specimen and beam orientations. This success is also facilitated by improving image quality by digital image processing techniques to the point where a structure image is obtained and each atom position is represented by a resolved image feature. Figure 1 shows an example of a low angle (∼10°) Σ = 129/[110] tilt boundary in a ∼250Å Au film, taken under tilted beam brightfield imaging conditions, to illustrate the steps necessary to obtain the atomic structure configuration from the image. The original image of Fig. 1a shows the regular arrangement of strain-field images associated with the cores of ½ [10] primary dislocations which are separated by ∼15Å.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


Author(s):  
W.W. Adams ◽  
G. Price ◽  
A. Krause

It has been shown that there are numerous advantages in imaging both coated and uncoated polymers in scanning electron microscopy (SEM) at low voltages (LV) from 0.5 to 2.0 keV compared to imaging at conventional voltages of 10 to 20 keV. The disadvantages of LVSEM of degraded resolution and decreased beam current have been overcome with the new generation of field emission gun SEMs. In imaging metal coated polymers in LVSEM beam damage is reduced, contrast is improved, and charging from irregularly shaped features (which may be unevenly coated) is reduced or eliminated. Imaging uncoated polymers in LVSEM allows direct observation of the surface with little or no charging and with no alterations of surface features from the metal coating process required for higher voltage imaging. This is particularly important for high resolution (HR) studies of polymers where it is desired to image features 1 to 10 nm in size. Metal sputter coating techniques produce a 10 - 20 nm film that has its own texture which can obscure topographical features of the original polymer surface. In examining thin, uncoated insulating samples on a conducting substrate at low voltages the effect of sample-beam interactions on image formation and resolution will differ significantly from the effect at higher accelerating voltages. We discuss here sample-beam interactions in single crystals on conducting substrates at low voltages and also present the first results on HRSEM of single crystal morphologies which show some of these effects.


Sign in / Sign up

Export Citation Format

Share Document