scholarly journals A Multi Objective Evolutionary Algorithm for the Parameters Extraction of Organic Thin Film Transistors Models

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 939
Author(s):  
Rosario Schiano Lo Moriello ◽  
Davide Ruggiero ◽  
Leopoldo Angrisani ◽  
Enzo Caputo ◽  
Francesco de Pandi ◽  
...  

Thanks to their peculiar features, organic transistors are proving to be a valuable alternative to traditional semiconducting devices in several application fields; however, before releasing their exploitation, simulating their behaviour through adequate circuital models could be advisable during the design stage of electronic circuits and/or boards. Consequently, accurately extracting the parameter value of those models is fundamental to developing useful libraries for hardware design environments. To face the considered problem, the authors present a method based on successive application of Single- and Multi-Objective Evolutionary Algorithm for the optimal tuning of model parameters of organic transistors on thin film (OTFT). In particular, parameters are first roughly estimated to assure the best fit with the experimental transfer characteristics; the estimates are successively refined through the multi-objective strategy by also matching the values of the experimental mobility. The performance of the method has been assessed by estimating the parameters value of both P-type and N-type OTFTs characterized by different values of channel lengths; the obtained results evidence that the proposed method can obtain suitable parameters values for all the considered channel lengths.

Author(s):  
Houaida Becharguia ◽  
M. Mahdouani ◽  
R. Bourguiga

In this paper, we have study two types of thin-film organic transistors as well as the organic inverter. For manufacturing p-type and n-type organic thin film transistors (OTFT), pentacene and N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13H27) were used as organic semiconductors. The organic thin film transistors showed excellent ambipolar operation. This ambipolar device is very useful in building flexible integrated circuits with easy design and low power consumption. The characterization and modeling of complementary thin film organic transistors allows us to describe one of its important applications which are the "inverter". In order to better understand the operation of inverters, an analytical model has been developed to describe the electrical behavior of both types of transistors and organic inverter. The model was carried out for transistors and organic inverters made experimentally. In this present work, we present the different electrical parameters resulting from the modeling for the two types of transistors and the organic inverter wich based on the complementary OTFTs.


2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2018 ◽  
Vol 83 (2) ◽  
pp. 20201 ◽  
Author(s):  
Yao Ni ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Hang Yu ◽  
Yanyun Li ◽  
...  

Organic thin film transistors (OTFTs) with silicon oxide (SiO2)/poly(4-vinylphenol) (PVP)/polymethylmethacrylate (PMMA) tri-layer structure (SPP) as dielectric layers have been fabricated. To verify the validity of such tri-layer structure, two different organic semiconductor materials such as p-type pentacene and n-type fluorinated copper phthalo–cyanine (F16CuPc) are both used for fabricating OTFTs. Comparing with the OTFTs even by using PMMA modification, the better interface quality existing between SPP dielectric and organic film leads a higher conductive efficiency for transport carriers in channel. And then the field effect carriers (hole in pentacene OTFTs and electron in F16CuPc OTFTs) mobilities are both increased obviously. Our results show the SPP dielectric structure can be widely used to improve performance of OTFTs.


2007 ◽  
Vol 101 (6) ◽  
pp. 064502 ◽  
Author(s):  
Jae-Hong Kwon ◽  
Jung-Hoon Seo ◽  
Hochul Kang ◽  
Dong Hoon Choi ◽  
Byeong-Kwon Ju

2018 ◽  
Vol 81 (3) ◽  
pp. 30202 ◽  
Author(s):  
Nawel Arfaoui ◽  
Walid Boukhili ◽  
Mounira Mahdouani ◽  
Joaquim Puigdollers ◽  
Ramzi Bourguiga

In this work, pentacene based thin film transistors (TFTs) with different channel lengths (L = 2.5, 5, 10 and 20 μm) have been fabricated and characterized electrically. Exploiting the electrical characteristics, we have analyzed the channel length effect on the key parameters of fabricated TFTs. We found that the performance of pentacene-TFTs was enormously enhanced by the reduction of channel length .We have also examined the influence of contact and channel resistances (RC and Rch) on the electrical proprieties of fabricated TFTs, using the transmission line method (TLM). Then, we have modeled the dependence of the total resistance RT on the gate voltage VG using the grain boundary trapping Meyer–Neldel rule (GBT-MNR) model and we have successfully reproduced, the output characteristic of pentacene TFTs using the overall resistance extracted from the GBT-MNR model. Finally, in order to investigate the channel length effect on the dynamic behavior of fabricated devices, we have reported a dynamic model based on the quasistatic assumptions which were used for metal-oxide-semiconductor field-effect transistor (MOSFET). Accordingly, we have presented a simple small-signal equivalent circuit to calculate theoretically the capacitances of pentacene-TFTs for different channel lengths.


2006 ◽  
Vol 965 ◽  
Author(s):  
Hua-Chi Cheng ◽  
Yu-Rung Peng ◽  
Chao-An Chung ◽  
Wei-Hsin Hou ◽  
Zing-Way Pei

ABSTRACTWe have demonstrated organic thin-film transistor devices on synthesis paper of polypropylene (PP). All the fabrications are in solution-based processes except electrodes. As a barrier and smoother layer, photosensitive epoxy, 5μm-thich was coated on the paper substrate by using slit die coating. Polyvinyl phenol (PVP) was mixed with poly (melamine-co-formaldehyde) methylated, filmed by spin coating and ultraviolet (UV) cross linked to provide the gate dielectric layer. Using poly (3-hexylthiophene) as an active layer, a high-performance organic transistor with field effect mobility up to 0.006 cm2/ V s and an on/off ratio of 50 can be achieved. For the applications in flexible and disposable electronics, to built organic transistors on a cheap synthesis paper substrate can extremely lower the cost.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Baji Shaik ◽  
Mujeeb Khan ◽  
Mohammed Rafi Shaik ◽  
Mohammed A.F. Sharaf ◽  
Doumbia Sekou ◽  
...  

A-π-D-π-A-based small molecules 6,6′-((thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-T) and 6,6′-(((2,3-dihydrothieno[3,4-b][1,4]dioxine-5,7-diyl)bis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-EDOT) have been designed and synthesized. The diketopyrrolopyrrole acts as an electron acceptor, while the thiophene or 3,4-ethylenedioxythiophene acts as an electron donor. The donor–acceptor groups are connected by an ethynyl bridge to further enhance the conjugation. The optoelectronics, electrochemical, and thermal properties have been investigated. Organic thin film transistor (OTFT) devices prepared from TDPP-T and TDPP-EDOT have shown p-type mobility. In as cast films, TDPP-T and TDPP-EDOT have shown a hole mobility of 5.44 × 10−6 cm2 V−1 s−1 and 4.13 × 10−6 cm2 V−1 s−1, respectively. The increase in the mobility of TDPP-T and TDPP-EDOT OTFT devices was observed after annealing at 150 °C, after which the mobilities were 3.11 × 10−4 cm2 V−1 s−1 and 2.63 × 10−4 cm2 V−1 s−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document