scholarly journals Analysis of a Resonant Converter with Wide Input Voltage

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1110
Author(s):  
Bor-Ren Lin ◽  
Alexis Phaik Imm Goh ◽  
Kai-Wei Wang

A DC-DC converter with a 16:1 (Vin,max = 16Vin,min) wide input voltage operation is presented for auxiliary power supplies on solar power conversion circuits or railway vehicles. The solar cell output voltage is associated with the solar intensity (day or night) and geographical location. Thus, the wide input voltage capability of DC converters is required for photovoltaic power conversion. For low power supplies on railway vehicles, the nominal input voltages are 24 V~110 V for the electric door system, motor drive, solid state lighting systems and braking systems. The presented converter uses buck/boost and resonant circuits to achieve the wide input voltage range operation from 18 V to 288 V. If Vin stays on a low input voltage range (18 V~72 V), the buck/boost circuit is operated at a voltage boost characteristic. On the other hand, the buck/boost circuit is operated at a voltage buck characteristic when the input voltage climbs to a high voltage range (72 V~288 V). Thus, the buck/boost circuit can output a constant voltage. Then, the resonant circuit in the second stage is worked at a constant input voltage case so that the frequency variation range is reduced. Finally, to investigate the performance and effectiveness of the studied circuit, experiments with a 500 W prototype were conducted to investigate the performance of the studied circuit.

2019 ◽  
Vol 10 (1) ◽  
pp. 310 ◽  
Author(s):  
Bor-Ren Lin ◽  
Yong-Sheng Zhuang

This paper studied a hybrid resonant converter with three half bridge legs for wide input voltage operation. Compared to the conventional resonant converters with narrow voltage operation, the presented converter can achieve wider voltage operation. On the basis of the proper switching status of power switches, the developed converter can operate at half-bridge resonant circuit under high input voltage range and the other two full-bridge resonant circuits under medium and low input voltage ranges. Each resonant circuit has a 2:1 (Vin,max = 2Vin,min) input voltage operation range. Therefore, the developed converter can achieve an 8:1 (Vin,max = 8Vin,min) wide voltage operation. The main advantage of the studied converter is the single-stage direct current (DC)/DC power conversion instead of the two-stage power conversion to achieve wide voltage operation. Because the equivalent resonant tank of the adopted converter is controlled by frequency modulation, the soft switching operation on power switches or rectifier diodes can be realized to improve circuit efficiency. The performance of the proposed circuit was confirmed and verified by experiments with a laboratory circuit.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2536
Author(s):  
Bor-Ren Lin ◽  
Yi-Kuan Lin

A full-bridge converter with an additional resonant circuit and variable secondary turns is presented and achieved to have soft-switching operation on active devices, wide voltage input operation and low freewheeling current loss. The resonant tank is linked to the lagging-leg of the full bridge pulse-width modulation converter to realize zero-voltage switching (ZVS) characteristic on the power switches. Therefore, the wide ZVS operation can be accomplished in the presented circuit over the whole input voltage range and output load. To overcome the wide voltage variation on renewable energy applications such as DC wind power and solar power conversion, two winding sets are used on the output-side of the proposed converter to obtain the different voltage gains. Therefore, the wide voltage input from 90 to 450 V (Vin,max = 5Vin,min) is implemented in the presented circuit. To further improve the freewheeling current loss issue in the conventional phase-shift pulse-width modulation converter, an auxiliary DC voltage generated from the resonant circuit is adopted to reduce this freewheeling current loss. Compared to the multi-stage DC converters with wide input voltage range operation, the proposed circuit has a low freewheeling current loss, low switching loss and a simple control algorithm. The studied circuit is tested and the experimental results are demonstrated to testify the performance of the resented circuit.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1931
Author(s):  
Bor-Ren Lin ◽  
Yen-Chun Liu

A new circuit structure of LLC converter is studied and implemented to achieve wide zero-voltage switching range and wide voltage operation such as consumer power units without power factor correction and long hold up time demand, battery chargers, photovoltaic converters and renewable power electronic converters. The dc converter with the different secondary winding turns is adopted and investigated to achieve the wide input voltage operation (50–400 V). To meet wide voltage operation, the full bridge and half bridge dc/dc converters with different secondary turns can be selected in the presented circuit to have three different voltage gains. According to input voltage range, the variable frequency scheme is employed to have the variable voltage gain to overcome the wide input voltage operation. Therefore, the wide soft switching load variation and wide voltage operation range are achieved in the presented resonant circuit. The prototype circuit is built and tested and the experiments are demonstrated to investigate the circuit performance.


Author(s):  
K.O. Khokhlov ◽  
G.K. Khokhlov ◽  
A.V. Ishchenko ◽  
A.N. Cherepanov ◽  
A.S. Naronov

The electric power converter for downhole telemetry systems of oil-well pumps include a downhole block connected to the pump that contains electronic circuits required for the operation of the motor pump sensors and transmission of data about their condition to the surface are described. A few methods of electric power conversion for this purpose are considered. The circuit contained two steps of voltage converting are proposed. The electrical scheme of this method is considered in the article. Proposed decisions are simulated and verified experimentally. The input high supply voltage range (200-4200 V) without loss of efficiency (even temporary) was obtained. The results of simulation and experimental studies have shown very close results.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1650
Author(s):  
Yu Lin Juan

In this study, a dual-output converter with a wide input voltage range is proposed for directly equalized charging of series-connected batteries without additional power conversion losses. Compared with most of the equalized charging topologies, such as the those with a multi-winding transformer or voltage multiplier, the proposed converter could be applied to different voltage conversion ratio applications. The proposed converter is capable not only of step-down but also step-up/down power conversions for different input voltage levels. By operating in discontinuous conduction mode, the diode reverse recovery losses can be eliminated and operation stability can also be enhanced. The operation principles and design criteria are both illustrated. A prototype of charging two series-connected LiFePO4 batteries is constructed. Corresponding experimental results of different input voltage levels are provided to verify the performance and validity.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3723 ◽  
Author(s):  
Manuel Escudero ◽  
Matteo-Alessandro Kutschak ◽  
David Meneses ◽  
Noel Rodriguez ◽  
Diego P. Morales

The phase shift full bridge (PSFB) is a widely known isolated DC-DC converter topology commonly used in medium to high power applications, and one of the best candidates for the front-end DC-DC converter in server power supplies. Since the server power supplies consume an enormous amount of power, the most critical issue is to achieve high efficiency. Several organizations promoting electrical energy efficiency, like the 80 PLUS, keep introducing higher efficiency certifications with growing requirements extending also to light loads. The design of a high efficiency PSFB converter is a complex problem with many degrees of freedom which requires of a sufficiently accurate modeling of the losses and of efficient design criteria. In this work a losses model of the converter is proposed as well as design guidelines for the efficiency optimization of PSFB converter. The model and the criteria are tested with the redesign of an existing reference PSFB converter of 1400 W for server applications, with wide input voltage range, nominal 400 V input and 12 V output; achieving 95.85% of efficiency at 50% of the load. A new optimized prototype of PSFB was built with the same specifications, achieving a peak efficiency of 96.68% at 50% of the load.


Author(s):  
Konstantin Khokhlov ◽  
Georgy Khokhlov ◽  
Aleksey Ishchenko ◽  
Alexander Cherepanov ◽  
Alexander Naronov

<span lang="EN-US">The electric power converter for downhole telemetry systems of oil-well pumps include a downhole block connected to the pump that contains electronic circuits required for the operation of the motor pump sensors and transmission of data about their condition to the surface are described. A few methods of electric power conversion for this purpose are considered. The circuit contained two steps of voltage converting are proposed. The electrical scheme of this method is presented in the article. Proposed method is simulated and verified experimentally. The input high supply voltage range (200-4200 V) without loss of efficiency (even temporary) was obtained. The results of simulation and experimental studies have shown very close results.</span>


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2158
Author(s):  
Gustavo C. Knabben ◽  
Grayson Zulauf ◽  
Jannik Schäfer ◽  
Johann W. Kolar ◽  
Matthias J. Kasper ◽  
...  

The next-generation industrial environment requires power supplies that are compact, efficient, low-cost, and ultra-reliable, even across mains failures, to power mission-critical electrified processes. Hold-up time requirements and the demand for ultra-high power density and minimum production costs, in particular, drive the need for power converters with (i) a wide input voltage range, to reduce the size of the hold-up capacitor, (ii) soft-switching over the full input voltage and load ranges, to achieve low losses that facilitate a compact realization, and (iii) complete PCB-integration for low-cost manufacturing. In this work, we conceptualize, design, model, fabricate, and characterize a 1.5kW, 12 V-output DC/DC converter for industrial power supplies that is required to operate across a wide 300 V–430 V input voltage range. This module utilizes an LLC-based control scheme for complete soft-switching and a snake-core transformer to divide the output current with a balanced flux among multiple secondary windings. Detailed loss models are derived for every component in the converter. The converter achieves close to 96 peak efficiency with a power density of 337 W/3 ( 20.6kW/d3m), excellent matching to the derived loss models, and zero-voltage switching even down to zero load. The loss models are used to identify improvements to further boost efficiency, the most important of which is the minimization of delay times in synchronous rectification, and a subsequent improved 1.5kW hardware module eliminates nearly 25% of converter losses for a peak efficiency of nearly 97% with a power density of 308 W/3 ( 18.8kW/d3m). Two 1.5kW modules are then paralleled to achieve 3 kW output power at 12 V and 345 W/3 ( 21.1kW/d3m) with ideal current sharing between the secondary outputs and no drop in efficiency from a single module, an important characteristic enabled by the novel snake-core transformer.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 370 ◽  
Author(s):  
Bor-Ren Lin ◽  
Chu-Xian Dai

This paper presents a inductor–inductor–capacitor (LLC) resonant converter with variable winding turns to achieve wide voltage operation (100–400 V) and realize soft switching operation over the entire load range. Resonant converters have been developed for consumer power units in computers, power servers, medical equipment, and adaptors due to the advantages of less switching loss and better circuit efficiency. The main disadvantages of the LLC resonant converter are narrow voltage range operation owing to wide switching frequency variation and limited voltage gain. For computer power supplies with hold-up time function, electric vehicle battery chargers, and for power conversion in solar panels, wide input voltage or wide output voltage operation capability is normally demanded for powered electronics. To meet these requirements, the variable winding turns are used in the presented circuit to achieve high- or low-voltage gain when Vin is at low- or high-voltage, respectively. Therefore, the wide voltage operation capability can be implemented in the presented resonant circuit. The variable winding turns are controlled by an alternating current (AC) power switch with two back-to-back metal-oxide-semiconductor field-effect transistors (MOSFETs). A 500-W prototype is implemented and test results are presented to confirm the converter performance.


Sign in / Sign up

Export Citation Format

Share Document