scholarly journals Open-Circuit Fault Detection in a Multilevel Inverter Using Sub-Band Wavelet Energy

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Faisal A. Khan ◽  
Mohammad Munawar Shees ◽  
Mohammed F. Alsharekh ◽  
Saleh Alyahya ◽  
Faisal Saleem ◽  
...  

Recent research has focused on sustainable development and renewable energy resources, thus motivating nonconventional cutting-edge technology development. Multilevel inverters are cost-efficient devices with IGBT switches that can be used in ac power applications with reduced harmonics. They are widely used in the power electronics industry. However, under extreme stress, the IGBT switches can experience a fault, which can lead to undesirable operation. There is a need for a reliable system for detecting switch faults. This paper proposes a signal processing method to detect open-circuit problems in IGBT switches. Relative wavelet energy has been used as a feature for a machine learning algorithm to diagnose and classify the faulted switches. The switching sequence can be altered to restore a healthy output voltage. Inverter faults have been diagnosed by using support vector machine (SVM) and decision tree (DT), and an ensemble model based on decision tree (DT) and XG boost algorithm was developed, which yielded 92%, 88%, and 94.12% accuracy, respectively.

Heart disease is a common problem which can be very severe in old ages and also in people not having a healthy lifestyle. With regular check-up and diagnosis in addition to maintaining a decent eating habit can prevent it to some extent. In this paper we have tried to implement the most sought after and important machine learning algorithm to predict the heart disease in a patient. The decision tree classifier is implemented based on the symptoms which are specifically the attributes required for the purpose of prediction. Using the decision tree algorithm, we will be able to identify those attributes which are the best one that will lead us to a better prediction of the datasets. The decision tree algorithm works in a way where it tries to solve the problem by the help of tree representation. Here each internal node of the tree represents an attribute, and each leaf node corresponds to a class label. The support vector machine algorithm helps us to classify the datasets on the basis of kernel and it also groups the dataset using hyperplane. The main objective of this project is to try and reduce the number of occurrences of the heart diseases in patients


2020 ◽  
Author(s):  
Juan Chen ◽  
Yong-ran Cheng ◽  
Zhan-hui Feng ◽  
Meng-Yun Zhou ◽  
Nan Wang ◽  
...  

Abstract Background: Accurate prediction of the number of patients with conjunctivitis plays an important role in providing adequate treatment at the hospital, but such accurate predictive model currently does not exist. The current study sought to use machine learning (ML) prediction based on past patient for conjunctivitis and several air pollutants. The optimal machine learning prediction model was selected to predict conjunctivitis-related number patients.Methods: The average daily air pollutants concentrations (CO, O3, NO2, SO2, PM10, PM2.5) and weather data (highest and lowest temperature) were collected. Data were randomly divided into training dataset and test dataset, and normalized mean square error (NMSE) was calculated by 10 fold cross validation, comparing between the ability of seven ML methods to predict the number of patient due to conjunctivitis (Lasso penalized liner model, Decision tree, Boosting regression, Bagging regression, Random forest, Support vector, and Neural network). According to the accuracy of impact prediction, the important air and weather factors that affect conjunctivitis were identified.Results: A total of 84977 cases to treat conjunctivitis were obtained from the ophthalmology center of the Affiliated Hospital of Hangzhou Normal University. For all patients together, the NMSE of the different methods were as follows: Lasso penalized liner regression: 0.755, Decision tree: 0.710, Boosting regression: 0.616, Bagging regression: 0.615, Random forest: 0.392, Support vectors: 0.688, and Neural network: 0.476. Further analyses, stratified by gender and age at diagnosis, supported Random forest as being superior to others ML methods. The main factors affecting conjunctivitis were: O3, NO2, SO2 and air temperature.Conclusion: Machine learning algorithm can predict number of patients due to conjunctivitis, among which, the Random forest algorithm had the highest accuracy. Machine learning algorithm could provide accurate information for hospitals dealing with conjunctivitis caused by air factors.


2020 ◽  
Author(s):  
Yong-ran Cheng ◽  
Zhan-hui Feng ◽  
Meng-Yun Zhou ◽  
Nan Wang ◽  
Ming-Wei Wang ◽  
...  

Abstract Background Accurate prediction of the number of patients with conjunctivitis plays an important role in providing adequate treatment at the hospital, but such accurate predictive model currently does not exist. The current study sought to use machine learning (ML) prediction based on past patient for conjunctivitis and several air pollutants. The optimal machine learning prediction model was selected to predict conjunctivitis-related number patients. Methods The average daily air pollutants concentrations (CO, O3, NO2, SO2, PM10, PM2.5) and weather data (highest and lowest temperature) were collected. Data were randomly divided into training dataset and test dataset, and normalized mean square error (NMSE) was calculated by 10 fold cross validation, comparing between the ability of seven ML methods to predict the number of patient due to conjunctivitis (Lasso penalized liner model, Decision tree, Boosting regression, Bagging regression, Random forest, Support vector, and Neural network). According to the accuracy of impact prediction, the important air and weather factors that affect conjunctivitis were identified. Results A total of 84977 cases to treat conjunctivitis were obtained from the ophthalmology center of the Affiliated Hospital of Hangzhou Normal University. For all patients together, the NMSE of the different methods were as follows: Lasso penalized liner regression: 0.755, Decision tree: 0.710, Boosting regression: 0.616, Bagging regression: 0.615, Random forest: 0.392, Support vectors: 0.688, and Neural network: 0.476. Further analyses, stratified by gender and age at diagnosis, supported Random forest as being superior to others ML methods. The main factors affecting conjunctivitis were: O3, NO2, SO2 and air temperature. Conclusion Machine learning algorithm can predict number of patients due to conjunctivitis, among which, the Random forest algorithm had the highest accuracy. Machine learning algorithm could provide accurate information for hospitals dealing with conjunctivitis caused by air factors.


2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Linda A. Antonucci ◽  
Alessandra Raio ◽  
Giulio Pergola ◽  
Barbara Gelao ◽  
Marco Papalino ◽  
...  

Abstract Background Recent views posited that negative parenting and attachment insecurity can be considered as general environmental factors of vulnerability for psychosis, specifically for individuals diagnosed with psychosis (PSY). Furthermore, evidence highlighted a tight relationship between attachment style and social cognition abilities, a key PSY behavioral phenotype. The aim of this study is to generate a machine learning algorithm based on the perceived quality of parenting and attachment style-related features to discriminate between PSY and healthy controls (HC) and to investigate its ability to track PSY early stages and risk conditions, as well as its association with social cognition performance. Methods Perceived maternal and paternal parenting, as well as attachment anxiety and avoidance scores, were trained to separate 71 HC from 34 PSY (20 individuals diagnosed with schizophrenia + 14 diagnosed with bipolar disorder with psychotic manifestations) using support vector classification and repeated nested cross-validation. We then validated this model on independent datasets including individuals at the early stages of disease (ESD, i.e. first episode of psychosis or depression, or at-risk mental state for psychosis) and with familial high risk for PSY (FHR, i.e. having a first-degree relative suffering from psychosis). Then, we performed factorial analyses to test the group x classification rate interaction on emotion perception, social inference and managing of emotions abilities. Results The perceived parenting and attachment-based machine learning model discriminated PSY from HC with a Balanced Accuracy (BAC) of 72.2%. Slightly lower classification performance was measured in the ESD sample (HC-ESD BAC = 63.5%), while the model could not discriminate between FHR and HC (BAC = 44.2%). We observed a significant group x classification interaction in PSY and HC from the discovery sample on emotion perception and on the ability to manage emotions (both p = 0.02). The interaction on managing of emotion abilities was replicated in the ESD and HC validation sample (p = 0.03). Conclusion Our results suggest that parenting and attachment-related variables bear significant classification power when applied to both PSY and its early stages and are associated with variability in emotion processing. These variables could therefore be useful in psychosis early recognition programs aimed at softening the psychosis-associated disability.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


Sign in / Sign up

Export Citation Format

Share Document