scholarly journals A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Suleiman Aliyu Babale ◽  
Kashif Nisar Paracha ◽  
Sarosh Ahmad ◽  
Sharul Kamal Abdul Rahim ◽  
Zainab Yunusa ◽  
...  

This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods.

2020 ◽  
Vol 13 (1) ◽  
pp. 45-65 ◽  
Author(s):  
Anna V. Nielsen ◽  
Michael J. Beauchamp ◽  
Gregory P. Nordin ◽  
Adam T. Woolley

Traditional microfabrication techniques suffer from several disadvantages, including the inability to create truly three-dimensional (3D) architectures, expensive and time-consuming processes when changing device designs, and difficulty in transitioning from prototyping fabrication to bulk manufacturing. 3D printing is an emerging technique that could overcome these disadvantages. While most 3D printed fluidic devices and features to date have been on the millifluidic size scale, some truly microfluidic devices have been shown. Currently, stereolithography is the most promising approach for routine creation of microfluidic structures, but several approaches under development also have potential. Microfluidic 3D printing is still in an early stage, similar to where polydimethylsiloxane was two decades ago. With additional work to advance printer hardware and software control, expand and improve resin and printing material selections, and realize additional applications for 3D printed devices, we foresee 3D printing becoming the dominant microfluidic fabrication method.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 169
Author(s):  
Muhammad Ikram ◽  
Kamel Sultan ◽  
Muhammad Faisal Lateef ◽  
Abdulrahman S. M. Alqadami

Next-generation communication systems and wearable technologies aim to achieve high data rates, low energy consumption, and massive connections because of the extensive increase in the number of Internet-of-Things (IoT) and wearable devices. These devices will be employed for many services such as cellular, environment monitoring, telemedicine, biomedical, and smart traffic, etc. Therefore, it is challenging for the current communication devices to accommodate such a high number of services. This article summarizes the motivation and potential of the 6G communication system and discusses its key features. Afterward, the current state-of-the-art of 5G antenna technology, which includes existing 5G antennas and arrays and 5G wearable antennas, are summarized. The article also described the useful methods and techniques of exiting antenna design works that could mitigate the challenges and concerns of the emerging 5G and 6G applications. The key features and requirements of the wearable antennas for next-generation technology are also presented at the end of the paper.


2019 ◽  
Vol 9 (8) ◽  
pp. 1565 ◽  
Author(s):  
Elassy ◽  
Akau ◽  
Shiroma ◽  
Seo ◽  
Ohta

Patterned conformal conductive structures are used to realize flexible electronics for applications such as electronic skin, communication devices, and sensors. Thus, there is a demand for low-cost rapid fabrication techniques for flexible and stretchable conductors. Spray-coating of liquid metals is a prototyping method that is compatible with elastic substrates. In this work, UV-curable and polyimide masks were used to pattern sprayed liquid metal (LM). The effect of the spraying parameters on the thickness and conductivity of the LM was characterized. A minimum LM linewidth of 48 µm was achieved, along with a minimum gap width of 34 µm. A LM patch antenna and transmission line, which can potentially be used for communication systems, were demonstrated using this fabrication process.


Author(s):  
Athulan Vijayaraghavan ◽  
Stephen V. Jayanathan ◽  
Moneer M. Helu ◽  
David A. Dornfeld

Microfluidic devices are gaining popularity in a variety of applications, ranging from molecular biology to bio-defense. However, the widespread adoption of this technology is constrained by the lack of efficient and cost-effective manufacturing processes. This paper focuses on the roller imprinting process, which is being developed to rapidly and inexpensively fabricate micro-fluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling over a fixed workpiece substrate and mechanically deforming it. Roller imprinting aims to replace processes that were developed for laboratory scale prototyping which tend to not be scalable and have high equipment requirements and overheads. We discuss the limitations of PDMS soft lithography in large-scale manufacture of microfluidic devices. We also discuss the design, fabrication, and testing of a simple roller imprinting device. This imprinter has been developed based on the principles of precision machine design and is implemented using a three-axis machine tool for actuation and position measurement. A framework for the micro-machining of precision imprint rolls is also presented.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 1665-1668 ◽  
Author(s):  
Gregory A. Cooksey ◽  
Javier Atencia

Elastomeric valves integrated into foldable microfluidic devices built with tapes.


2015 ◽  
Vol 752-753 ◽  
pp. 217-220
Author(s):  
Jun Seo Choi ◽  
Sung Gook Park

Although nanoimprint lithography (NIL) can successfully fabricate structures down to 10 nm [1], it is difficult to produce perforated pores with diameters less than 100 nm in freestanding polymer membranes. Since it requires molding using a stamp with extremely high aspect ratio to achieve high mechanical stability for the membrane fully released from a substrate. We utilized silicon microneedle structures as an imprinting mold that overcomes these issues. Also, pressed self-perfection (PSP) process was employed after nanoimprinting to further reduce the pore size. Additionally, the membranes were integrated with microfluidic devices to measure current-voltage curves in order to determine pore size indirectly.


MRS Advances ◽  
2016 ◽  
Vol 1 (28) ◽  
pp. 2085-2090 ◽  
Author(s):  
Khadija Yazda ◽  
Sophie Roman ◽  
Saïd Tahir ◽  
François Henn ◽  
Vincent Jourdain

ABSTRACTStudying the transport of ions through single-walled carbon nanotubes (SWCNTs) necessitate the fabrication of a fluidic setup integrating carbon nanotubes. In this article, we report on the development of a simple fabrication protocol of SWCNTs fluidic devices. This protocol allows an excellent control of the system features and of the experimental conditions compared with previously published protocols. Our protocol based on the use of the popular SU-8, the preferred photoresist for the fabrication of high-aspect-ratio patterns, allows one to prepare sealed microfluidic devices incorporating one or several tens of individual carbon nanotubes of length between 20 and 80 µm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Konishi ◽  
Yugo Kakehi ◽  
Fuminari Mori ◽  
Shinji Bono

AbstractGallium alloy liquid metals (Galinstan) possessing fluidity, electric conductivity, and low toxicity are attractive for use in flexible devices and microfluidic devices. However, the oxide skin of Galinstan in the atmosphere adheres to the microchannel surface, preventing the transportation of Galinstan in the channel. To tackle the problem of the adhesion of Galinstan to microchannel, we introduced liquid with Galinstan into a channel with a diameter of 1000 μm. Then, we found that the cylindrical shape of the channel enabled smooth transportation of Galinstan independently of both the liquid and the channel material. The liquid introduced with Galinstan not only prevents adhesion but also improves the spatial controllability of Galinstan in the channel. We can control the position of Galinstan with 100 μm resolution using highly viscous (> 10 cSt) liquid. In addition, we combined the microchannel with patterned electrodes, fabricating a serially arranged capacitive device. The local capacitance detected by the patterned electrodes changed by more than 6% via the smooth transportation of Galinstan. The analysis results based on an equivalent circuit quantitatively agree with our experimental results. We can modulate the serially arranged capacitors using the smooth transportation of Galinstan in the channel.


Author(s):  
Jiandi Wan ◽  
Pavel Landsman ◽  
Bing Xia ◽  
Paul E. Bower ◽  
Volkmar Heinrich ◽  
...  

Using non-lithographic fabrication methods developed in our laboratory, we prepared continuous-flow microfluidic analyzers. We tested these devices in experiments involving detection of bacterial endospores. The detection was based on the enhancement of the fluorescence of a cationic dye, 3,3′-diethylthiacyanine iodide (THIA), in the presence of spores. We were able to detect as few as ~105 spores when injected in a device. The measurements with the micro-fluidic devices manifested significantly higher sensitivity for bacterial spores than for vegetative bacteria. Such distinction between spores and vegetative bacteria could not be achieved with THIA using steady-state emission measurements.


Sign in / Sign up

Export Citation Format

Share Document