scholarly journals A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 169
Author(s):  
Muhammad Ikram ◽  
Kamel Sultan ◽  
Muhammad Faisal Lateef ◽  
Abdulrahman S. M. Alqadami

Next-generation communication systems and wearable technologies aim to achieve high data rates, low energy consumption, and massive connections because of the extensive increase in the number of Internet-of-Things (IoT) and wearable devices. These devices will be employed for many services such as cellular, environment monitoring, telemedicine, biomedical, and smart traffic, etc. Therefore, it is challenging for the current communication devices to accommodate such a high number of services. This article summarizes the motivation and potential of the 6G communication system and discusses its key features. Afterward, the current state-of-the-art of 5G antenna technology, which includes existing 5G antennas and arrays and 5G wearable antennas, are summarized. The article also described the useful methods and techniques of exiting antenna design works that could mitigate the challenges and concerns of the emerging 5G and 6G applications. The key features and requirements of the wearable antennas for next-generation technology are also presented at the end of the paper.

2019 ◽  
Vol 27 ◽  
pp. 01001
Author(s):  
Suleman Tahir ◽  
Shahzad Amin Sheikh ◽  
Omer Bin Saeed

Orthogonal Frequency Division Multiplexing (OFDM) is a highly regarded technique used in the 4G mobile communication systems to provide reliable communication and high data rates due to the orthogonality between its sub carriers. However, it cannot be used in the next generation cellular system i.e. 5G. Thus, a new technique Generalized Frequency Division Multiplexing (GFDM) has been proposed to meet the demands of the next generation systems, which are higher data rates than 4G, minimum response time, lower power consumption etc. GFDM is a non-orthogonal, multicarrier scheme, which seems to fulfil the requirements of the new wireless communication system. The aim of this paper is to use the pilot symbols and their optimum placements within the data for the channel estimation of the GFDM system. It is shown that the optimum arrangement of the pilot symbols is to place them uniformly on equal intervals within the data and to cluster them in the middle of the data.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 64 ◽  
Author(s):  
Fidel Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio López-Iturri ◽  
Imanol Picallo ◽  
...  

With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.


Computation ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 35 ◽  
Author(s):  
Roumelas ◽  
Nistazakis ◽  
Stassinakis ◽  
Volos ◽  
Tsigopoulos

The obsolete communication systems used in the underwater environment necessitates the development and use of modern telecommunications technologies. One such technology is the optical wireless communications, which can provide very high data rates, almost infinite bandwidth and very high transmission speed for real time fast and secure underwater links. However, the composition and the optical density of seawater hinder the communication between transmitter and receiver, while many significant effects strongly mitigate the underwater optical wireless communication (UOWC) systems’ performance. In this work, the influences of chromatic dispersion and time jitter are investigated. Chromatic dispersion causes the temporal broadening or narrowing of the pulse, while time jitter complicates the detection process at the receiver. Thus, the broadening of the optical pulse due to chromatic dispersion is studied and the influence of the initial chirp is examined. Moreover, the effect of the time jitter is also taken into consideration and for the first time, to the best of our knowledge, a mathematical expression for the probability of fade is extracted, taking into account the influence of both of the above-mentioned effects for a UOWC system. Finally, the appropriate numerical results are presented.


Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Tole Sutikno

Doherty power amplifier (DPA) with high efficiency at the output power back off is highly demanded for modern wireless communication systems to achieve high data rates and reduce the power consumption and operation costs. This paper presents a new design strategy for enhancing DPA’s back-off efficiency. New design strategy called asymmetrical matching network is used to achieve asymmetric operation, which helps to compensate for the low power delivered by the peaking stage in the conventional DPA. The simulation results showed an enhancement in the back-off efficiency, where the proposed design is able toachieve 46-52% drain efficiency at 8 dB output power back-off while maintains high efficiency of 73-80 % at saturation over the designed bandwidth of 3.4-3.6 GHz. The proposed design is suitable for high efficiency sub-6 GHz fifth-generation wireless applications.<br /><div> </div>


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2014
Author(s):  
M. A. Elmagzoub ◽  
Asadullah Shaikh ◽  
Abdullah Alghamdi ◽  
Khairan Rajab

Next-generation access/mobile networks have set high standards in terms of providing wireless services at high data rates in order to keep up with the vast demands for other mobility and multiple services. Wireless-optical broadband access network (WOBAN) technology, also known as fibre-wireless (FiWi), has uncovered incredible opportunities for the future of next-generation networks because it gets the best of both domains: huge bandwidth provided by the optical fibre and high ubiquity of the wireless domain. The objective of FiWi networks is to integrate the high data rate and long reach provided by optical networks and the ubiquity and mobility of wireless networks, with the target to decrease their expense and complexity. Multiple-input–multiple-output (MIMO) is an inevitable technique for most of the new mobile/wireless networks that are driven by the huge data rates required by today’s users. Consequently, to construct any FiWi system for next-generation (NG) access/broadband networks, an MIMO technique has to be considered. This article presents a comprehensive, contemporary review of the latest subsystems, architectures and integrated technologies of MIMO wireless signals backhauling using optical fibre or fibre access networks, such as passive optical networks (PONs). An overview for FiWi, PONs and MIMO wireless systems is provided. In addition, advanced techniques of accommodating the MIMO wireless signals over optical fibre are explained and compared. Different types of wireless MIMO signals over fibre, such as 5G, WiFi and related transport technologies, are reviewed. Moreover, future research trends are also discussed.


Author(s):  
Evangelia M. Georgiadou ◽  
Ioannis Chochliouros ◽  
George Heliotis ◽  
Maria Belesioti

As the technological scene of the 21st century changes rapidly, new facts for telecom and networks are coming to the front. Users’ growing demands for enhanced multimedia services on one hand and expanding infrastructure on the other lead to the realization of innovative networks, able to serve more subscribers more efficiently. Past technologies have failed to meet the present and immediate needs for integrated services and applications of real time traffic and high data volumes, high speed Internet, video on demand, and mobile communications everywhere and all the time (Chochliouros & Spiliopoulou, 2003). Globalization and deregulation of the market stimulate increased competition and call for integration of existing switching, optical, satellite, and wireless technologies (Commission of the European Communities, 2006). In the telecom industry new commercial opportunities are introduced. Internet and data services growth, in combination with increased maturity of packet-based technologies, results in the redrawing of traditional telecommunications architectures (Barnes, & Jackson, 2002). High quality, distributed, multiservice networks, with advanced features of flexibility and reliability, are now feasible, accommodating both circuit-switched voice and packet-switched data (Chochliouros & Spiliopoulou, 2005). This key architectural evolution in telecommunication core and access networks is described under the broad term “next generation networking (NGN).” Next generation networks, which are expected to be deployed in the markets over the next years, base their operation on packet transport of all information and services, voice, data, or multimedia. Encapsulation into packets is commonly implemented via the Internet protocol (IP), whereas services become independent of transport details, thus enabling improved functionality at the edge of the network, extreme scalability, and higher availability (European Commission, 2005). Nevertheless, the industry shift from centralized switches to “next generation” distributed, enhanced service platforms arises very important issues. Interoperability with existing networks is implicit, while great challenges appear in the conversion strategies towards implementing and exploiting the new architecture. Conventional communication systems need to evolve smoothly to NGN, through well-defined and carefully- planned transition procedures, in order for true convergence to take place.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 400
Author(s):  
Bin Chen ◽  
Yi Lei ◽  
Gabriele Liga ◽  
Chigo Okonkwo ◽  
Alex Alvarado

Coded modulation (CM), a combination of forward error correction (FEC) and high order modulation formats, has become a key part of modern optical communication systems. Designing CM schemes with strict complexity requirements for optical communications (e.g., data center interconnects) is still challenging mainly because of the expected low latency, low overhead, and the stringent high data rate requirements. In this paper, we propose a CM scheme with bit-wise hard-decision FEC and geometric shaping. In particular, we propose to combine the recently introduced soft-aided bit-marking decoding algorithm for staircase codes (SCCs) with geometrically-shaped constellations. The main goal of this CM scheme is to jointly boost the coding gain and provide shaping gain, while keeping the complexity low. When compared to existing CM systems based on M-ary quadrature-amplitude modulation (MQAM, M = 64 , 128 , 256 ) and conventional decoding of SCCs, the proposed scheme shows improvements of up to 0 . 83 dB at a bit-error rate of 10 - 6 in the additive white Gaussian noise channel. For a nonlinear optical fiber system, simulation results show up to 24 % reach increase. In addition, the proposed CM scheme enables rate adaptivity in single-wavelength systems, offering six different data rates between 450 Gbit/s and 666 Gbit/s.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Shakthi Murugan K H ◽  
M Sumathi

AbstractWith advancement in communication systems and ever increasing demand of bandwidth, research has been oriented towards 5G networks. For achieving high data rates, mm waves are employed using radio over fiber (RoF) technique. This work focus on employing mm waves in free space optics. Two independent channels are employed with each having 5 Gbps data rate and 60 GHz of radio signal. Output signal received is observed by analyzing using BER and eye diagrams.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lorenzo Rubio ◽  
Juan Reig ◽  
Herman Fernández ◽  
Vicent M. Rodrigo-Peñarrocha

The knowledge of the propagation channel properties is an important issue for a successful design of ultrawideband (UWB) communication systems enabling high data rates in short-range applications. From an indoor measurement campaign carried out in a typical laboratory environment, this paper analyzes the path loss and time-dispersion properties of the UWB channel. Values of the path loss exponent are derived for the direct path and for a Rake receiver structure, examining the maximum multipath diversity gain when anallRake (ARake) receiver is used. Also, the relationship between time-dispersion parameters and path loss is investigated. The UWB channel transfer function (CTF) was measured in the frequency domain over a channel bandwidth of 7.5 GHz in accordance with the UWB frequency range (3.1–10.6 GHz).


Sign in / Sign up

Export Citation Format

Share Document