scholarly journals Optimizing AC Resistance of Solid PCB Winding

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 875 ◽  
Author(s):  
Minh Huy Nguyen ◽  
Handy Fortin Blanchette

At high frequency, power losses of a winding due to eddy currents becomes significant. Moreover, the skin and proximity AC resistances are influenced by the width of printed circuit board (PCB) conductors and distance between the adjacent tracks which causes many difficulties to design windings with lowest AC resistances. To clarify this phenomenon, this paper focuses on modeling the influence of skin and proximity effects on AC resistance of planar PCB winding, thereby providing guidelines to reduce the winding AC resistance. An approximate electromagnetic calculation method is proposed and it shows that when the winding proximity AC to DC ratio ( F p r o x i m i t y ) is equal to 1 3 the AC on DC ratio caused by skin effect ( F s k i n ) , the winding is optimized and it has lowest AC resistance. 3-D finite element simulations of 3, 7 and 10-Turn windings, which are divided into 3 groups with the same footprint, are presented to investigate the lowest AC resistance when the track width varies from 3 mm to 5 mm and the frequency range is up to 700 kHz. In order to verify the theoretical analysis and simulation results, an experiment with 3 simulated groups, (9 prototypes in total) is built and has a very good fit with simulation results. Experimental results show that at the optimal width, the AC resistance of the windings can be reduced up to 16.5 % in the frequency range from 200 kHz to 700 kHz.

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1324
Author(s):  
Minh Huy Nguyen ◽  
Handy Fortin Blanchette

At high frequency, AC resistance of a printed circuit board (PCB) winding becomes important and accounts for a large proportion of planar transformer losses. The winding is then influenced by both skin and proximity phenomenon, which makes the current distribution uneven resulting in an increased resistance. The study of improving AC resistance of a PCB winding has been tackled by many researchers. However, the lack of an overview and comparison among improvements has made it difficult to apply those methods to a specific winding. To overcome the above limitations, this paper investigates the pros and cons of three popular AC resistance optimizing methods: optimizing track width of a solid PCB winding, using multi-strands and using Litz style PCB winding. To verify the theoretical analysis, a total of 12 PCBs are simulated by finite element (FEM) and tested in the laboratory. Five criteria are analyzed, including skin resistance, proximity resistance, AC to DC ratio, total AC resistance and complexity are taken into consideration. The results of this study show that optimizing track width method has a significant improvement on AC resistance while the use of Litz PCB is effective for applications that need stable AC resistance in a wide frequency range. The use of parallel strands winding should be carefully considered as there is not significant benefit in both reducing the AC resistance and AC to DC ratio.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000325-000330 ◽  
Author(s):  
Wei Zhao ◽  
Mark Nakamoto ◽  
Karthikeyan Dhandapani ◽  
Brian Henderson ◽  
Ron Lindley ◽  
...  

Abstract Electrical Chip Board Interaction (e-CBI) has emerged as a new risk in chip design as silicon die can directly interact with printed circuit board (PCB) in substrate-less wafer level packaging technology. To assess this risk Qualcomm Technologies, Inc. has converted an existing test chip to wafer level packaging technology. Both the measured data and simulation results show that e-CBI risk is significant and must be carefully managed.


2020 ◽  
Vol 8 (5) ◽  
pp. 2587-2590

In this paper, penta-band antenna is presented for concurrent, multiband, and single chain radio receivers. The antenna is manufactured on a 50 × 100 mm FR4 printed circuit board, and is able to provide five concurrent, operating bands covering a frequency range from 2 to 6 GHz. The antenna bandwidth can be increased up to 280 MHz. Using hexahedral mesh the slot antenna design we can achieve more accurate concurrent bands. These five bands are having larger bandwidth than conventional antennas. Using CM-FARAD (Concurrent Multiband Frequency Agile Radio) architecture we design the antenna for achieving concurrent multiband and single chain radio receiver. Using five slots we achieve our five concurrent bands that operate over wide bands which operate at 2.4,3.0,3,7,4.5,5.6 GHz respectively.


2021 ◽  
Vol 26 (1) ◽  
pp. 1-11
Author(s):  
Tális Piovesan ◽  
Hamiltom Confortin Sartori ◽  
Vitor Cristiano Bender ◽  
José Renes Pinheiro

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Steffen Scherr ◽  
Serdal Ayhan ◽  
Grzegorz Adamiuk ◽  
Philipp Pahl ◽  
Thomas Zwick

A new concept of an ultrawide bandwidth 180°-hybrid-coupler is presented. The ultrawideband design approach is based on the excitation of a coplanar waveguide (CPW) mode and a coupled slot line (CSL) mode in the same double slotted planar waveguide. The coupler is suitable for realization in planar printed circuit board technology. For verification of the new concept a prototype was designed for the frequency range from 3 GHz to 11 GHz, built, and measured. The measurement results presented in this paper show a good agreement between simulation and measurement and demonstrate the very broadband performance of the new device. The demonstrated coupler with a size of 40 mm × 55 mm exhibits a fractional bandwidth of 114% centered at 7 GHz with a maximum amplitude imbalance of 0.8 dB and a maximum phase imbalance of 5°.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2201 ◽  
Author(s):  
Pedro A. Martinez ◽  
Enrique A. Navarro ◽  
Jorge Victoria ◽  
Adrian Suarez ◽  
Jose Torres ◽  
...  

Magnetic near-field probes (NFP) represent a suitable tool to measure the magnetic field level from a small electromagnetic interference (EMI) source. This kind of antenna is useful as a magnetic field probe for pre-compliance EMC measurements or debugging tasks since the user can scan a printed circuit board (PCB) looking for locations with strong magnetic fields. When a strong H-field point is found, the designer should check the PCB layout and components placement in that area to detect if this could result in an EMI source. This contribution focuses on analyzing the performance of an easy to build and low-cost H-field NFP designed and manufactured using a standard PCB stack-up. Thereby, the frequency range and sensitivity of the NFP-PCB are analyzed through a Finite Element Method (FEM) simulation model that makes it possible to evaluate its sensibility and effective frequency range. The numerical results obtained with the FEM models are validated against measurements to verify the design and performance of our NFP. The FEM model reproduces the experimental procedure, which is used to evaluate the performance of the NFP in terms of sensitivity by means of the simulated near-field distribution. The NFP-PCB has almost a flat response from 180 MHz to 6 GHz, with an almost perfect concordance between numerical and experimental S21 results. The numerical results show an average transmission loss of −27.9 dB by considering the flat response bandwidth, whereas the experimental one is −29.7 dB. Finally, the designed NFP is compared to two high-quality commercial probes in order to analyze its performance.


2015 ◽  
Vol 28 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Milica Kisic ◽  
Nelu Blaz ◽  
Kalman Babkovic ◽  
Andrea Maric ◽  
Goran Radosavljevic ◽  
...  

In this work, two variations of the displacement sensor, based on the heterogeneous integration process of traditional fabrication technologies PCB (Printed Circuit Board) and LTCC (Low Temperature Co-fired Technology) with a flexible polyimide foil are presented. The proposed sensor uses the coil as an essential part, spacer and a polyimide foil as a flexible membrane with a piece of ferrite attached to it. With the displacement of the polyimide foil, the ferrite gets closer to the coil causing an increase in its inductance and a decrease of the resonant frequency of the system (coil, ferrite and antenna). Simulation results showed that sensors with equal outer dimensions but different internal structures exhibit different performances. Two prototypes of the sensor with different ferrite dimensions are designed, fabricated and characterized. Finally, their performances are compared.


2019 ◽  
Vol 69 (5) ◽  
pp. 453-457
Author(s):  
Sambaiah Pelluri ◽  
Anmol Jain ◽  
M. V. Kartikeyan

A dual-band bandpass substrate integrated waveguide (SIW) filter is proposed using a quad-mode cavity in this paper. First two degenerative modes (TE102 and TE201) with via perturbation give the first passband. The second passband is realised by using higher modes (side and diagonal modes of TE202) which are obtained by putting square slot at the center of the cavity. The square slot increases the frequency ratio of the center frequencies of first and second passbands. Moreover, orthogonal feed-lines are used in the proposed design to increase transmission zeros (TZs) which helps to improve the selectivity and out-of-band rejection of the filter. Designed and fabricated a dualband filter prototype using a single layer printed circuit board (PCB) technology, size is only 19 mm × 19 mm. The insertion losses are 2.1 dB and 2.4 dB, and fractional bandwidths of 3.40 per cent and 2.00 per cent at 11.00 and 15.58 GHz, respectively. The measurement results show close agreement with the simulation results.


2020 ◽  
Vol 10 (20) ◽  
pp. 7192
Author(s):  
Yinong Zeng ◽  
Yingping Yi ◽  
Pu Liu

This paper presents an improved investigation into the effects of temperature-dependent parasitic elements on the silicon carbide (SiC) MOSFET power losses. Based on the physical knowledge of MOSFET, a circuit-level loss analytical model is proposed, which takes the parasitic elements of the power devices and the stray inductances of the Printed Circuit Board (PCB) traces into consideration. The state equations derived from the equivalent circuit of each stage is solved by iteration to calculate the loss in the switching transients. In order to study the temperature characteristic completely, the key parameters needed in the calculation are extracted from power device test platform based on Agilent B1505A. The loss assessment of the proposed analytical model with varied elements has been successfully substantiated by the experimental results of a 400-V, 15-A double-pulse-test bench. Finally, some practical knowledge about loss mechanisms is given to help estimate the power losses and optimize the efficiency of power converters.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Rajeswari Packianathan ◽  
Raju Srinivasan

Miniaturization of the feature size in modern electronic circuits results from placing interconnections in close proximity with a high packing density. As a result, coupling between the adjacent lines has increased significantly, causing crosstalk to become an important concern in high-performance circuit design. In certain applications, microstriplines may be used in printed circuit boards for propagating high-speed signals, rather than striplines. Here, the electromagnetic coupling effects are analyzed for various microstrip transmission line structures, namely, microstriplines with a guard trace, double stub microstriplines, and parallel serpentine microstriplines using the finite-difference time-domain method. The numerical results are compared with simulation results, where the variants are simulated using an Ansoft high-frequency structure simulator. The analysis and simulation results are experimentally validated by fabricating a prototype and establishing a good correspondence between them. Numerical results are compared with simulation and experimental results, showing that double stub microstriplines reduce the far end crosstalk by 7 dB and increase the near end crosstalk by about 2 dB compared with the parallel microstriplines. Parallel serpentine microstriplines reduce the far end crosstalk by more than 10 dB and also reduce more than 15 mV of peak far end crosstalk voltage, compared with parallel microstriplines.


Sign in / Sign up

Export Citation Format

Share Document