scholarly journals Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3270 ◽  
Author(s):  
Martin Černý ◽  
Monika Vítězová ◽  
Tomáš Vítěz ◽  
Milan Bartoš ◽  
Ivan Kushkevych

With growing demand for clean and cheap energy resources, biogas production is emerging as an ideal solution, as it provides relatively cheap and clean energy, while also tackling the problematic production of excessive organic waste from crops and animal agriculture. Behind this process stands a variety of anaerobic microorganisms, which turn organic substrates into valuable biogas. The biogas itself is a mixture of gases, produced mostly as metabolic byproducts of the microorganisms, such as methane, hydrogen, or carbon dioxide. Hydrogen itself figures as a potent bio-fuel, however in many bioreactors it serves as the main substrate of methanogenesis, thus potentially limiting biogas yield. With help of modern sequencing techniques, we tried to evaluate the composition in eight bioreactors using different input materials, showing shifts in the microbial consortia depending on the substrate itself. In this paper, we provide insight on the occurrence of potentially harmful microorganisms such as Clostridium novyi and Clostridium septicum, as well as key genera in hydrogen production, such as Clostridium stercorarium, Mobilitalea sp., Herbinix sp., Herbivorax sp., and Acetivibrio sp.

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2021 ◽  
Vol 22 (1) ◽  
pp. 078-084
Author(s):  
Wiharja Wiharja ◽  
Widiatmini Sih Winanti ◽  
Prasetiyadi Prasetiyadi ◽  
Amita Indah Sitomurni

ABSTRACT Palm Oil Mill Effluent (POME) resulted from the palm oil industry is a potential resource for biogas production. In this study, POME was processed by utilizing microbes in an anaerobic condition using a fixed bed reactor. This study aimed at providing alternative processing of POME into biogas at the most optimum biogas yield without any pretreatment, taking advantage of POME conditions generated from the production process at the average temperature of 55 – 60 °C. In the anaerobic process, temperature conditions have a significant effect on bacteria's performance to degrade organic matter. In thermophilic conditions, bacteria deteriorate organic substrates more actively than in mesophilic states. This research proved that using fixed bed reactor technology to treat POME without pretreatment has generated biogas at the yield of 25.43 liters/liter of POME production. Applying this technology also demonstrated that investment and operating costs are cheaper due to having no mixing tank and fewer chemicals applications for the neutralization process. Keywords: biogas, fixed bed reactor, POME, pretreatment, thermophilic   ABSTRAK Proses pengolahan POME dapat dilakukan dengan menggunakan proses fermentasi anaerobik yaitu memanfaatkan kerja bakteri anaerobik untuk memproduksi biogas. Penelitian ini bertujuan memberikan alternatif pengelolaan limbah cair pabrik kelapa sawit yang dapat menghasilkan biogas yang paling optimal tanpa melakukan pretreatment. Proses yang dipilih disesuaikan dengan kondisi panas POME yang keluar proses yaitu sekitar 55 - 60 oC. Kondisi temperatur sangat berpengaruh nyata terhadap kinerja bakteri pendegradasi bahan organik di dalam limbah cair dalam proses anaerobik. Pada kondisi termofilik bakteri lebih aktif dibandingkan pada kondisi mesofilik. Melalui penelitian ini, dapat diketahui bahwa dengan menggunakan teknologi reaktor fixed bed untuk mengolah POME tanpa adanya pretreatment, biogas tetap dapat diperoleh dengan perolehan rata rata 25,43 liter per liter POME. Dengan menggunakan teknologi ini biaya investasi dan operasi akan lebih murah dikarenakan tidak memerlukan bak pencampur dan penggunaan bahan kimia untuk proses netralisasi. Kata kunci: Biogas, reaktor fixed bed, POME, pretreatment, termofilik


2020 ◽  
Author(s):  
Nour El houda Chaher ◽  
Nils Engler ◽  
Abdallah Nassour ◽  
Michael Nelles

Abstract Tunisia is one of the developing countries which faces crucial challenges, the most prominent of which are the production of organic waste, the need for an appropriate waste treatment, and the demand for water and energy conservation. To this end, the present research was designed to develop a technical concept on closed cycle ‘biowaste to bioenergy’ treating food waste (FW) through combined biological processes. In this approach, semi-continuous anaerobic co-digestion (ACoD) of FW, wheat straw (WS), and cattle manure (CM) was tested to investigate the relationship between the effect of the feedstock mixtures and C:N ratio on biogas and digestate generation at different organic loading rates (OLRs) ranging from 2 to 3.6 kg VS/m3.d. Results showed that the mono-digested FW was optimal and reached 565.5 LN/kg VSin at an OLR of 2.4 kg VS/m3.d, and then a drop of biogas production was recorded. However, for co-digested substrates, the optimum mixture ratio was FW:CM 75:25, where 62%, 39.89%, 91.26%, 130.9% and 119.97% of the biogas yield improved for OLRs ranging from 2 to 3.6 kg VS/m3. d, respectively. Admittedly, the target of this work was to enhance the ACoD process, but it also examined the exploitation of different AD-effluents. Therefore, special attention was paid to the generated digestates to decide how it can be efficiently upcycled later. Thus, the closed cycle ‘biowaste to bioenergy’ treatment met two of the major Tunisian concerns: efficient organic waste management as well as sustainable bioenergy production.


Author(s):  
Nour El Houda Chaher ◽  
Nils Engler ◽  
Abdallah Nassour ◽  
Michael Nelles

AbstractTunisia is one of the developing countries which faces crucial challenges, the most prominent of which are the production of organic waste, the need for an appropriate waste treatment, and the demand for water and energy conservation. To this end, the present research was designed to develop a technical concept on closed cycle “biowaste to bioenergy” treating food waste (FW) through combined biological processes. In this approach, semi-continuous anaerobic co-digestion (ACoD) of FW, wheat straw (WS), and cattle manure (CM) was tested to investigate the relationship between the effect of the feedstock mixtures and C:N ratio on biogas and digestate generation at different organic loading rates (OLRs) ranging from 2 to 3.6 kg VS/m3.d. Results showed that the mono-digested FW was optimal and reached 565.5 LN/kg VSin at an OLR of 2.4 kg VS/m3.d, and then a drop of biogas production was recorded. However, for co-digested substrates, the optimum mixture ratio was FW:CM 75:25, where 62%, 39.89%, 91.26%, 130.9%, and 119.97% of the biogas yield improved for OLRs ranging from 2 to 3.6 kg VS/m3.d, respectively. Admittedly, the target of this work was to enhance the ACoD process, but it also examined the exploitation of different AD effluents. Therefore, special attention was paid to the generated digestates to decide how it can be efficiently upcycled later. Thus, the closed cycle “biowaste to bioenergy” treatment met two of the major Tunisian concerns: efficient organic waste management and sustainable bioenergy production.


2015 ◽  
Vol 29 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Justyna Lalak ◽  
Agnieszka Kasprzycka ◽  
Ewelina M. Paprota ◽  
Jerzy Tys ◽  
Aleksandra Murat

AbstractThe aim of the study was to assess the potential of organic wastes from the agriculture and food industry as co-substrate for biogas production, on the basis of physical and chemical parameters analysis and biogas yield in the process of methane fermentation. The experimental material consisted of carrot pomace, kale by-products and maize silage. Methane fermentation was conducted in bioreactors equipped with an automatic control and measurement system. The study indicated correct physicochemical properties in terms of high content of dry organic matter and also correct C/N ratio. That was reflected in high biogas yields which amounted to, respectively, 558 N dm3kg−1VS−1for carrot pomace and kale by-products, and 526 N dm3kg−1VS−1for maize silage. The study showed that the intensity of biogas production was varied and depended on the composition of fermented mixtures. Methane fermentation of organic waste mixtures significantly increased the amount of biogas efficiency compared to the fermentation of individual substrates. The successful run of the experiment indicates that a mixture composed of carrot pomace and kale by-products is a good substrate for the production of biogas.


mSystems ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
J. A. Frank ◽  
M. Ø. Arntzen ◽  
L. Sun ◽  
L. H. Hagen ◽  
A. C. McHardy ◽  
...  

ABSTRACT The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates. Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.


2013 ◽  
Vol 675 ◽  
pp. 374-378
Author(s):  
Bin Yang ◽  
Fa Gen Yang ◽  
Wu Di Zhang ◽  
Fang Yin ◽  
Xing Ling Zhao ◽  
...  

In order to gain biogas production potential and energy conversion efficiency of biogas fermentation of sorghum distilled residue (SDR), the anaerobic batch fermentation experiments were performed at 30 degrees Celsius. After experiments, we got experimental results as follows: biogas production of SDR during total fermentation time of 28days is 2885mL; properties of raw materials including: TS is 88.58%, VS is 16.69%, heating value is 15.684kJ/g, TS biogas yield is 220mL/g, VS biogas yield is 1300ml/g, raw material biogas yield is 190mL/g, and energy conversion efficiency of biogas fermentation of SDR is 30.38%. The results indicate that biogas fermentation is an effective new method to recycle clean energy from SDR.


2020 ◽  
Vol 202 ◽  
pp. 08004
Author(s):  
Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Aisyah Bahrani ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Biogas technology solves the problem of energy crisis. Biogas is a renewable and environment friendly fuel (Franthena, 2015). This study aims to determine the optimum value of grinding size variations in biogas production with the solid state anaerobic digestion (SS-AD) method of biogas production from rice husk waste. We divide the method used into four stages, namely, the testing phase of total rice content, solids, preparation phase, operation phase, and results analysis. The rice husk waste used for this study came from the Rowosari area. We accept rice for preliminary treatment with chemical pretreatment (NaOH). We soaked rice husk with a concentration of 6% NaOH for 24 hours as a control variable. Milling variations used as physical pretreatment are 10 mesh, 18 mesh, 35 mesh, 60 mesh. We used bioreactors with a volume of 200 ml. We observed all biogas reactors produced every two days for ± 60 days of research. The results showed that the reactors with 10 mesh, 18 mesh, 35 mesh, 60 mesh milling variations obtained a total biogas yield of 11.688484; 9,479955; 12.50772; 19,03718 ml / grTS until the 60th day. The control reactor (without grinding variations) produced 9,084606 ml / grTS. The highest biogas production level is 60 mesh with a value, (A) 19.03718 (ml / grTS); the rate of biogas production (U) 0.2416979 (ml / gr TS.day); and the minimum time for biogas formation (λ) is 3.83908 days.


Author(s):  
Christian C. Opurum ◽  
Christian O. Nweke ◽  
Christopher E. Nwanyanwu ◽  
Nkemakolam A. Nwogu

In this study, anaerobic digestion (AD) of three livestock manure: (poultry manure (PM), pig dung (PD), and cow dung (CD) was conducted at different mixed ratios under mesophilic (25-35°C) conditions. Two kinetic models, the modified Gompertz and bi-logistic function model were used to simulate the cumulative biogas yield from the experiments, and model parameters simultaneously obtained. The biogas production profile appeared diauxic-like or biphasic with multiple peaks, revealing the complexity and multi-component nature of the substrates. There was an increase in biogas yield from the treatments, PD/CD 1:1; 37.25 dm3 (3.47%), PD/CD 3:1; 38.41 dm3 (6.96%), CD/PM 1:1; 26.76 dm3 (16.80%) and CD/PM 3:1 24.31 dm3 (6.11%), whereas PD/CD 2:1 (15.41 dm3) and CD/PM 2:1 (22.57 dm3) exhibited inhibitory effect. However, statistical analysis (ANOVA) indicated a significant difference in biogas yield from PD alone (36 dm3) compared to CD alone (22.91 dm3). The two models showed good performance in the simulation of the AD process, with high correlation coefficients, an indication of a very strong relationship between experimental data and model parameters. However, the bi-logistic function model showed a better fit in the simulation of the experimental values, as it was able to capture the curves in the plots, with a higher correlation coefficient R2 (0.9920 - 0.9985) than the modified Gompertz model (0.9797 - 0.9968). This work has shown that the phenomenon of diauxic growth in the anaerobic digestion of complex organic substrates could be captured quantitatively in the kinetic model using bi-logistic function model.


2021 ◽  
Vol 10 (3) ◽  
pp. 623-633
Author(s):  
Fahmi Arifan ◽  
Abdullah Abdullah ◽  
Siswo Sumardiono

One biomass form with a high potential to replace fossil fuels is biogas. Biogas yield production depends on the raw material or substrate used. This research was aimed to investigate abiogas production technique using an anaerobic digestion process based on a substrate mixture of a starter, cow dung, chicken manure, tofu liquid waste, and cabbage waste.The anaerobic digestion is a promised process to reduce waste while it is also producing renewable energy.Moreover, the process can digest high nutrients in the waste. The anaerobic digestion results showed that the combination producing the highest biogas amount was 200 mg starter mixed with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. The larger the amount of cabbage waste, the lower the biogas production. The quadratic regression analysisand kinetics model based on the Gompertz equation was obtained for the variable with the highest yield, compared to 70% cow dung, 15% chicken manure, and 15% tofu liquid waste and the estimated kinetic parameters based on the Gompertz equations revealed that the value of P∞ = 2,795.142 mL/gr.Ts, Rm = 113, 983.777 mL/gr.Ts, and t = 10.2 days. The results also conluded that the use of  tofu liquid waste produced more biogas than cabbage waste. This study also successfully showed significant development in terms of the amount of biogas produced by adding organic waste to animal manure as the substrate used


Sign in / Sign up

Export Citation Format

Share Document