scholarly journals Fe3O4-PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 177 ◽  
Author(s):  
Tooba Touqeer ◽  
Muhammad Waseem Mumtaz ◽  
Hamid Mukhtar ◽  
Ahmad Irfan ◽  
Sadia Akram ◽  
...  

Synthesis of surface modified/multi-functional nanoparticles has become a vital research area of material science. In the present work, iron oxide (Fe3O4) nanoparticles prepared by solvo-thermal method were functionalized by polydopamine. The catechol groups of polydopamine at the surface of nanoparticles provided the sites for the attachment of Aspergillus terreus AH-F2 lipase through adsorption, Schiff base and Michael addition mechanisms. The strategy was revealed to be facile and efficacious, as lipase immobilized on magnetic nanoparticles grant the edge of ease in recovery with utilizing external magnet and reusability of lipase. Maximum activity of free lipase was estimated to be 18.32 U/mg/min while activity of Fe3O4-PDA-Lipase was 17.82 U/mg/min (showing 97.27% residual activity). The lipase immobilized on polydopamine coated iron oxide (Fe3O4_PDA_Lipase) revealed better adoptability towards higher levels of temperature/pH comparative to free lipase. The synthesized (Fe3O4_PDA_Lipase) catalyst was employed for the preparation of biodiesel from waste cooking oil by enzymatic transesterification. Five factors response surface methodology was adopted for optimizing reaction conditions. The highest yield of biodiesel (92%) was achieved at 10% Fe3O4_PDA_Lipase percentage concentration, 6:1 CH3OH to oil ratio, 37 °C temperature, 0.6% water content and 30 h of reaction time. The Fe3O4-PDA-Lipase activity was not very affected after first four cycles and retained 25.79% of its initial activity after seven cycles. The nanoparticles were characterized by FTIR (Fourier transfer infrared) Spectroscopy, XRD (X-ray diffraction) and TEM (transmission electron microscopy), grafting of polydopamine on nanoparticles was confirmed by FTIR and formation of biodiesel was evaluated by FTIR and GC-MS (gas chromatography-mass spectrometry) analysis.

2021 ◽  
Vol 17 (1) ◽  
pp. 135-145
Author(s):  
Momodou Salieu Sowe ◽  
Arda Rista Lestari ◽  
Eka Novitasari ◽  
Masruri Masruri ◽  
Siti Mariyah Ulfa

Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2015 ◽  
Vol 98 (6) ◽  
pp. 1645-1654 ◽  
Author(s):  
Haixiang Zhao ◽  
Yongli Wang ◽  
Xiuli Xu ◽  
Heling Ren ◽  
Li Li ◽  
...  

Abstract A simple and accurate authentication method for the detection of adulterated vegetable oils that contain waste cooking oil (WCO) was developed. This method is based on the determination of cholesterol, β-sitosterol, and campesterol in vegetable oils and WCO by GC/MS without any derivatization. A total of 148 samples involving 12 types of vegetable oil and WCO were analyzed. According to the results, the contents and ratios of cholesterol, β-sitosterol, and campesterol were found to be criteria for detecting vegetable oils adulterated with WCO. This method could accurately detect adulterated vegetable oils containing 5% refined WCO. The developed method has been successfully applied to multilaboratory analysis of 81 oil samples. Seventy-five samples were analyzed correctly, and only six adulterated samples could not be detected. This method could not yet be used for detection of vegetable oils adulterated with WCO that are used for frying non-animal foods. It provides a quick method for detecting adulterated edible vegetable oils containing WCO.


2020 ◽  
Author(s):  
Jaikumar Mayakrishnan ◽  
Sangeethkumar Elumalai ◽  
Sasikumar Nandagopal ◽  
Induja SARAVANAN ◽  
Selvakumar Raja ◽  
...  

2008 ◽  
Vol 2 (1) ◽  
pp. 84-88 ◽  
Author(s):  
Sulaiman Al-Zuhair

The applications of lipase immobilized on ceramic beads and entrapped in sol-gel matrix, in the production of bio-diesel from waste cooking oil, are compared to that of free lipase. Experimental determination of the effect of molar equivalent of methanol, to moles of ester bond in the triglyceride, on the rate of the enzymatic trans-esterification was experimentally determined. It was found that for the same weight of lipase used, the production of bio-diesel was much higher using lipase immobilized on ceramic beads in comparison to that using lipase entrapped in sol-gel and in free form. Substrates inhibition effect was observed in all cases, which agrees with previous results found in literature. The optimum methanol:oil molar ratio was found to be 0.87 for immobilized lipase from yeast source, C. antartica and 1.00 for free lipase from the same yeast source and immobilized lipase from bacterial source, P. cepacia. On the other hand, it was shown that biodieasel can be produced in considerable amounts, with yield reaching 40%, in absence of organic solvent using immobilized lipase, from P. cepacia, on ceramic beads. The results of this study can be used to determine the kinetics parameters of mathematical models which describe the system.


2021 ◽  
Vol 16 (1) ◽  
pp. 22-30
Author(s):  
Cahyarani Paramesti ◽  
Wega Trisunaryanti ◽  
Savitri Larasati ◽  
Nugroho Raka Santoso ◽  
Sri Sudiono ◽  
...  

The synthesis and characterization of Ni/mesoporous silica (Ni/MS) catalysts from Lapindo mud with various metal loading for the hydrocracking of waste cooking oil into biofuel has been conducted. The MS was synthesized by the hydrothermal method using CTAB as a template. The nickel-metal of 4, 6, and 8 wt% was loaded into the MS using salt precursors of Ni(NO3)2.6H2O via wet impregnation, produced the Ni(4)/MS, Ni(6)/MS, and Ni(8)/MS catalysts, respectively. The materials produced were then characterized by X-ray Powder Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), and Surface Area Analyzer (SAA), and Absorption Atomic Spectrophotometry (AAS). The catalytic activity test was carried out for hydrocracking of waste cooking oil and the resulted liquid product was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). The results showed that the specific surface area of Ni(4)/MS, Ni(6)/MS, and Ni(8)/MS catalysts are 63.08, 91.45, and 120.45 m2/g, respectively. The liquid products of the hydrocracking using Ni(4)/MS, Ni(6)/MS, and Ni(8)/MS catalysts were 80.57, 74.63, and 75.77 wt%, where the total biofuel produced was 55.46, 50.93, and 54.05 wt%, respectively. Based on these results, Ni(4)/MS material was successfully used as the most potent catalyst in the hydrocracking of waste cooking oil into the biofuel. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2021 ◽  
Vol 277 ◽  
pp. 03001
Author(s):  
Maegala Nallapan Maniyam ◽  
Hazeeq Hazwan Azman ◽  
Hasdianty Abdullah ◽  
Nor Suhaila Yaacob

Recently, the application of lipase enzyme as biocatalyst in the conversion of waste cooking oil (WCO) to free fatty acids and glycerol has been trending well. Therefore, the present study attempts to use WCO which is found in abundance in Malaysia as the substrate for halal microbial lipase conversion to glycerol which can be exploited in the food industry. The workability of free lipase for WCO conversion, however suffers severely due to potential denaturation of the enzyme and extended reaction time. Thus, this study embraced the immobilization method to encapsulate crude lipase extracted from Rhodococcus pyridinivorans strain UCC 0009 in gellan gum and calcium alginate, respectively and compared their ability for WCO conversion to free crude lipase. The gellan gum and calcium alginate-immobilized crude lipase evidently exhibited greater WCO conversion, demonstrating 2.18-fold and 1.61-fold enhanced lipase activity, respectively in comparison to free crude lipase. The repeated reuse of the gellan gum-immobilized crude lipase maintained reasonable lipase activity for 9 cycles, retaining an average 85 % WCO conversion for the first seven cycles and 67 % conversion in the subsequent batches. Thus, the immobilized halal lipase can be foreseen as a green substitute to chemical catalyst for WCO conversion which meets the worldwide demand for clean technologies.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

Sign in / Sign up

Export Citation Format

Share Document