scholarly journals Rockburst Identification Method Based on Energy Storage Limit of Surrounding Rock

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 343 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Chun Luo ◽  
Heng Zhang ◽  
Ruikai Gong

Rockbursts are one of the prominent problems faced by deep underground engineering. Not only do they affect the construction progress, but they also threaten the safety of construction personnel and equipment, and may even induce earthquakes. Therefore, the prediction of rockbursts has very important engineering significance for the excavation of deeply buried tunnels. In this paper, a new indicator for stability and optimization evaluation of hard, brittle surrounding rock under high geo-stresses, namely the minimum energy storage limit of surrounding rock induced by transient unloading, is proposed. In addition, the time for erecting support for tunnel excavation in the rockburst area and the impact of excavation dimensions on rockburst are investigated. The results show that transient unloading during the tunnel excavation process will reduce the energy storage limit of the rock mass. When the strain energy density of the local surrounding rock exceeds the minimum energy storage limit of the rock mass, the rock mass energy is suddenly released, and rockburst occurs. Rockburst is most likely to occur at 0.42–0.65 D away from the working face. The increasing length of a round adopted in high geo-stress areas will make the surrounding rock unstable and increase the probability of rockburst.

2013 ◽  
Vol 438-439 ◽  
pp. 1249-1252
Author(s):  
Hong Xiao Wu ◽  
Song Lin Yue ◽  
Cun Cheng Shi ◽  
Xiao Hu ◽  
Cheng Chu ◽  
...  

In the deep rock mass surrounding, rock burst, large deformation, zonal fracturing and phenomena like these may occur in the tunnel excavation process. When zonal fracturing happens, it is essential to reconsider the types of support, the boundary of support and the approach of tunnel excavation. In this paper, the control theory about the surrounding rock stability under high pre-existing stresses was researched, and the efficient support form which was the combination of high strength anchor bar and anchor cable was ascertained to be adaptive to deep tunnel excavation. According to the deformation and zonal fracturing mechanism of the surrounding rock, a comprehensive support program that combined intensive short anchor bars and long anchor cables was established, and the numerical simulation was carried out to verify the feasibility of the support form.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2012 ◽  
Vol 443-444 ◽  
pp. 267-271
Author(s):  
Xu Dong Cheng ◽  
Peng Ju Qin

In this paper, the mechanical behaviors of pipe roof and bolt of shallow and unsymmetrical tunnel in soft rock are analyzed. Through the finite element software Phase2.0, combined with the geological conditions that construction site often appear, the mechanical behaviors of pipe roof and bolt and surrounding rock in the process of horseshoe highway tunnel construction in the condition that surface is soft rock and underground for the bedrock are analyzed. Research results show that: after tunnel excavation in soft rock, surrounding rock near the tunnel is easy to suffer soft-rock large deformation even failure, which needs to timely support;Due to the impact of the unsymmetrical tunnel, the mechanical behaviors of surrounding rock are unsymmetrical, such as the maximum displacement of tunnel around 0.4 m distant from apex of arch ring, the stress is asymmetrical on both sides of the tunnel arch ring etc; In addition, pipe roof can effectively prevent from the displacement of soft rock strata, improve tunnel strength factor, reduce the plastic zone of surrounding rock. This paper provides theoretical basis for the design of pipe roof and bolt.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Hongwen Jing ◽  
Wenxin Zhu

Water inrush caused by the wetting-drying cycle is a difficult problem in tunnel excavation. To investigate the effect of the wetting-drying cycle on the stability of the tunnel surrounding rock, physical experiments and numerical simulations regarding the process of tunnel excavation with different wetting-drying cycle numbers were performed in this study. The evolutions of stress, displacement, and pore water pressure were analyzed. With the increase in cycle number, the pore water pressure, vertical stress, and top-bottom approach of the tunnel surrounding rock increase gradually. And the increasing process could be divided into three stages: slightly increasing stage, slowly increasing stage, and sharply increasing stage, respectively. The failure process of the surrounding rock under the wetting-drying cycle gradually occurs from the roof to side wall, while the baseplate changes slightly. The simulation results showed that the maximum principal stress in the surrounding rock mass of the tunnel increases, while the minimum principal stress decreases. Furthermore, the displacement of the rock mass decreases gradually with the increasing distance from the tunnel surface. By comparing the simulation results with the experimental results, well consistency is shown. The results in this study can provide helpful references for the safe excavation and scientific design of a tunnel under the wetting-drying cycle.


2012 ◽  
Vol 170-173 ◽  
pp. 465-469
Author(s):  
Sheng Ji Jin ◽  
Yong Qin Rui ◽  
Zhe Shu

To rely on nuclear power plant water tunnel project, through the numerical simulation methods, we analysized the extent of rock deformation and stability of the process of excavation and supporting to reveal the deformation near the working face of rock tunnel.The research results show: When carrying out tunnel excavation, the plastic deformation zone in the horizontal direction perpendicular to the tunnel axis and the vertical downward direction are extended, the vault appears to sink, but also occurred in surface subsidence. Contrast the extent of tunnel excavation: The minimum extent is the tunnel axis perpendicular to the vertical downward, followed along the tunnel axis, the maximum extent is perpendicular to the direction of horizontal tunnel axis. Three kinds of excavation methods, a substantial volume reduction of sinking takes place in short steps and extra short steps excavation than the excavation of the top arch , and the surrounding area within the plastic is significantly reduced, which shows the smaller footage of the excavation the better control of the sinking of the crown.


2013 ◽  
Vol 706-708 ◽  
pp. 560-564
Author(s):  
Yi Huan Zhu ◽  
Guo Jian Shao ◽  
Zhi Gao Dong

Soft rock is frequently encountered in underground excavation process. It is difficult to excavate and support in soft rock mass which has low strength, large deformation and needs much time to be out of shape but little time to be self-stabilized. Based on a large underground power station, finite element model analysis was carried out to simulate the excavation process and the results of displacement, stress and plasticity area were compared between supported and unsupported conditions to evaluate the stability of the rock mass.


2013 ◽  
Vol 295-298 ◽  
pp. 2913-2917
Author(s):  
Xiang Yang Zhang ◽  
Min Tu

In order to study the stress distribution and its dynamic influence law while the protective layer mining, based on the transfer law of mining-induced stress in the coal seam floor and in front of the working face, using numerical simulation software to simulate the surrounding rock stress under the different pillar width mining conditions, and carried through the roadway deformation engineering practice observations. It is shown that reserved 110m coal pillar could weaken the impact on the front of the floor tunnel under the protective layer mining process. When the top liberated layer mining to reduce the impact of mining stress superposition, it should avoid the terminal lines on the two coal seams at the same location and may be staggered at least about 30m ~ 50m. And it obtained that the roadway deformation not only by mining impact, but also considering the geological environment surrounding rock conditions, tunnel position in which layers of rock, rock properties and other factors. The research guided the engineering practice successfully.


2021 ◽  
Author(s):  
Peng Li ◽  
Yunquan Wu ◽  
Meifeng Cai

Abstract The impact disturbance has an important influence on the safety of underground engineering openings. In this paper, based on the in-situ stress measurement and structural plane investigation, the model of jointed rock roadway was established using the discrete element method (3DEC) to study the instability and failure characteristic of roadway surrounding rock with dominant joint planes under impact disturbance and to further analyze the influence of different buried depths, impact stress wave peaks, and stress wave delays on the stability of the surrounding rock. The results show that the stability of the surrounding rock is poor, and the whole convergence deformation of the surrounding rock occurs under the impact stress wave. There are three failure modes in the surrounding rock: tensile-shear failure, tensile failure, and shear failure. Tensile-shear failure mainly occurs in a small range close to the roof and floor of the roadway and the free surfaces of the two sides, and tensile failure occurs locally, while shear failure mainly occurs along the joint plane outside this range. Moreover, the greater the buried depth and stress wave peak value, the more serious the deformation of the surrounding rock. With the increase of stress wave delay, the deformation of the surrounding rock shows complex characteristics. In addition, the impact failure mechanism of the surrounding rock in jointed rock masses was discussed. The research results have important guiding significance for the prevention and control of underground engineering cavern disasters.


Author(s):  
Shukun Zhang ◽  
Lu Lu ◽  
Ziming Wang ◽  
Shuda Wang

AbstractA study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjacent fault roadways. This research is based on the 15101 mining face in the Baiyangling Coal Mine, Shanxi, China, and uses simulation tests similar to digital speckle test technology to analyse the displacement, strain and vertical stress fields of surrounding rocks near faults to determine the influence of the coal pillar width. The results are as follows. The surrounding rock of the roadway roof fails to form a balance hinge for the massive rock mass. The vertical displacement, vertical strain and other deformation of the surrounding rock near the fault increase steeply as the coal pillar width decreases. The steep increase in deformation corresponds to a coal pillar width of 10 m. When the coal pillar width is 7.5 m, the pressure on the surrounding rock near the footwall of the fault suddenly increases, while the pressure on the hanging wall near the fault increases by only 0.35 MPa. The stress of the rock mass of the hanging wall is not completely shielded by the fault, and part of the load disturbance is still transmitted to the hanging wall via friction. The width of the fault coal pillars at the 15101 working face is determined to be 7.5 m, and the monitoring data verify the rationality of the fault coal pillars.


Sign in / Sign up

Export Citation Format

Share Document