scholarly journals PD Plus Dynamic Pressure Feedback Control for a Direct Drive Stewart Manipulator

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1125 ◽  
Author(s):  
Chenyang Zhang

In order to ensure good dynamic characteristics, servo valve is usually adopted as the drive part of Stewart manipulator which causes huge power consumption, while direct drive electro-hydraulic servo system has the advantages of energy saving, simple structure, convenient installation, and low failure rate. But its dynamic characteristics are so poor that it can only be applied to occasions where quick response is not needed. On the consideration above, following works are done in this paper. Since current coupling exists in the control system based on the speed of the servo motor as the control input, the control system of the direct drive Stewart manipulator is established based on the current of the servo motor as the control input in which the current coupling can be solved. In order to improve the dynamic characteristics of the direct drive Stewart manipulator, a Proportion Differentiation (PD) plus dynamic pressure feedback control strategy is also put forward in this paper, which is verified by using a simulated hydraulically driven Stewart manipulator. Simulation results show that both dynamic coupling and current coupling are solved and the control strategy proposed in this paper can significantly increase the bandwidths of all degrees of freedom.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 941
Author(s):  
Chenyang Zhang ◽  
Hongzhou Jiang

The torque mode is more suitable for the direct drive 6 degree of freedom (6-DOF) parallel mechanism than the speed mode that both dynamic coupling and current coupling among motors are easily solved, but its key parameters and dynamic characteristics have never been studied, which are important and are the goals of this paper. First the hydraulic system of the direct drive 6-DOF parallel mechanism is simplified. Then the transfer function of the direct drive hydraulic system with the torque mode is deduced together with that of the speed mode. Finally, comparative experiments are conducted. Results show that the dynamic characteristics of the system with the torque mode which are generally worse than those with the speed mode, are mainly determined by the parameters of the motor-pump second-order element of the transfer function composed of two under-damped second-order elements, proportion differentiation (PD) control strategy and dynamic pressure feedback (DPF) control strategy are useful for the system with the torque mode, but practical and effective methods are still needed.


Author(s):  
Lucas Ginzinger ◽  
Benjamin Heckmann ◽  
Heinz Ulbrich

A new approach to control a rubbing rotor by applying an active auxiliary bearing has been developed. The control force is applied indirectly using the auxiliary bearing, only in case of rotor rubbing. The auxiliary bearing is actuated using two unidirectional actuators. A three-phase control strategy has been developed which stabilizes the rotor system in case of an impact load and effectively avoids “backward whirling” which is very destructive. As soon as the load ceased the auxiliary bearing is separated from the rotor again and normal operation mode is continued. During the normal operation state, the feedback control does not interfere with the rotor system at all. A test rig has been developed to experimentally verify the control system. Various experiments show the success of the control strategy. In case of rubbing, the contact forces are reduced up to 95 percent. At the same time, the rotor deflection is decreased too. The activation and deactivation of the control system is operated fully automatically. A simulation framework for an elastic rotor including the non-smooth nonlinear dynamics of contacts is presented, which has been used to develop the feedback controller.


Author(s):  
Kazushi Sanada

A direct drive volume control (DDVC) is applied to fuel injection control for marine diesel engine. The DDVC consists of an AC servomotor, a fixed-displacement hydraulic pump, and a hydraulic cylinder. The hydraulic cylinder pushes a plunger pump and fuel is pressurized. When the fuel pressure becomes greater than injection pressure, fuel is injected to a combustion chamber. A brief introduction of the DDVC is described first in this paper referring to conventional fuel injection systems including a cam mechanism and a common rail system. A mathematical model of the DDVC for simulation is summarized. Experiments of fuel injection shows the control function of the DDVC fuel injection system. The topic of this paper is feedback control of the quantity of fuel injection (fuel mass per injection) of the DDVC. The feedback control system is simulated using the above mathematical model. Fuel injection is stopped by switching a drive signal of the AC servomotor and retracting a piston of the hydraulic cylinder. The timing to stop injection is adjusted based on crank angle. An algorithm of updating the crank angle to stop injection is proposed so that the quantity of fuel injection follows the target value. Simulation study shows that the update algorithm works successfully.


2016 ◽  
Vol 28 (5) ◽  
pp. 640-645
Author(s):  
Takao Sato ◽  
◽  
Hironobu Sakaguchi ◽  
Nozomu Araki ◽  
Yasuo Konishi

[abstFig src='/00280005/04.jpg' width='250' text='Multirate output feedback control' ] In the new design method we propose for a multirate output feedback control system, the hold interval of control input is longer than the sampling interval of plant output. In this system, unknown state variables are calculated using control input and plant output without observers. The multirate output feedback control system has been extended by introducing new design parameters that are designed independent of the calculation of the state variable. To our knowledge, however, no systematic design scheme has ever been proposed for design parameters in this case. In this study, quantization error is dealt with statistically and design parameters are decided to minimize quantization error.


2013 ◽  
Vol 433-435 ◽  
pp. 1141-1144
Author(s):  
Quan Li Han ◽  
Xi Wang

This paper introduces the SVPWM mechanism firstly and the software and hardware scheme of current loop in servo motor is designed; it also contains the control strategy and the current sampling principle. The dead time compensation problem in the inverter of the motor drive is discussed deeply. In the end, the software realization method of the interruption of current loop is presented in details.


2012 ◽  
Vol 233 ◽  
pp. 104-108 ◽  
Author(s):  
Li Zhang ◽  
Jing Luo ◽  
Rui Bo Yuan ◽  
Yi Bo Zhang

This paper studies on its cavitation and noise problem, according to traditional pressure controlling valve has a low accuracy of constant pressure, large leakage, poor lubrication, easy corrosion and so on, designs a new structure of pilot type of water hydraulic overflow valve based on the special physicochemical properties; Detecting the inlet pressure of the main valve with the help of the micro-pressure sensor and using closed-loop feedback control and dynamic pressure feedback control to eliminate steady-state error.


2012 ◽  
Vol 614-615 ◽  
pp. 1509-1513
Author(s):  
Xiang Jie Kong ◽  
Jian Yun Bai ◽  
Li Hong Liu

This paper contraposes 300MW CFB boiler of Shanxi certain coal-fired power plant, then optimize the control system of desulfurization and remake limestone transmission system. Collect the signal to establish knowledge base for judging starting or stalling control of feeding machine through lots of experiments. Adopt feedback control strategy to adjust the speed of feeding machine. Achieve the purpose of automatically controling the starting or stalling of feeding machine and the speed of feeding machine finally.


1995 ◽  
Author(s):  
O. O. Badmus ◽  
S. Chowdhury ◽  
C. N. Nett

This paper presents experimental demonstration of surge stabilization in an axial compressor rig with a feedback linearizing controller. The controller design approach is model-based, and hence a nonlinear surge model for the facility is first validated. The surge model is a modification of the classic one-dimensional incompressible fluid surge model, with an effective length function incorporated, to account for the increased path-length of the fluid in the compressor due to the imparted tangential forces of the blade. This model, which adequately describes the observed surge dynamics both in terms of amplitude and frequency of oscillation, is then used to develop the feedback control law. The feedback linearizing control input implicitly linearizes the dynamics between the system input, throttle area parameter, and the system output, inlet dynamic pressure. A linear state feedback control input, implemented on the feedback linearized system thus ensures stabilization of the surge dynamics in the original nonlinear model. Finally, the nonlinear based observer is included in closed loop implementation to enhance the tracking of the system output, and also to minimize the adverse effect of measurement noise, thereby improving closed loop system performance.


Author(s):  
Shoujun Yan ◽  
Zhao Wang ◽  
Pengfei Wang ◽  
Jiashuang Wan ◽  
Huawei Fang ◽  
...  

China lead bismuth eutectic (LBE) cooled fast reactor comprises of the primary system with lead bismuth eutectic (LBE) as the coolant, the secondary circuit with sub-cooled water as the coolant and the associated air cooling system for an effective rejection of thermal power to the environment as a final heat sink. The dynamic characteristics of LBE cooled fast reactor are different from the traditional Pressurized Water Reactors (PWRs) because of the variances in coolant properties as well as major differences due to the operation in the fast versus the thermal neutron spectrum. To investigate the dynamic characteristics of the CLEAR-IA reactor for control system design and simulation, a model for the main components of the reactor and the most relevant interactions among them is developed. Since all the coefficients in the models are functions of temperature, the models in this paper are not described by ordinary differential equation. These models are realized by using the S-function builder of SIMULINK. The steady state calculation result based on the thermal-hydraulic models show agreement with the design value. To show the proposed models could be used for the simulation, the transient process of parameter change is compared with Relap5 simulation code, which shows agreement. A Proportional-Integral (PI) controller is designed to keep the power following the set value as quickly as possible. To keep the inlet temperature of core coolant constant, a control strategy based on a simultaneous feed-forward and feedback scheme has been adopted. The feed-back control system is a PI controller and it can achieve a real time and no error control, but it has time delay. The feed-forward control can realize the control in advance before the LBE temperature at inlet of the core has been changed to reduce the overshoot. So the feed-forward can realize an advance and rough control, the feedback can realize a no error and accurate control. Based on the developed model and control strategy, dynamic simulations of the whole system in case of step changes of reactivity and set power are performed. The simulation results show that the proposed model is accurate enough to describe the dynamic behaviors of the plant in spite of its simplicity. It has also been demonstrated that the developed controllers for the CLEAR-IA can provide superior reactor control due to the efficiency of the control strategy adopted.


Sign in / Sign up

Export Citation Format

Share Document