scholarly journals Instantaneous Rotational Speed Algorithm for Locating Malfunctions in Marine Diesel Engines

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1396 ◽  
Author(s):  
Damian Kazienko ◽  
Leszek Chybowski

This article suggested broadening the standard methods for diagnosing the technical condition of diesel engines to include an analysis of the instantaneous rotational speed of compression combustion engines with the use of a novel algorithm. The authors revised the subject concerning the use of the analysis of instantaneous changes in the rotational speed of an engine when assessing its technical condition and the location of the malfunction. An algorithm and its practical implementation in a prototype diagnostic system called SpeedMA were presented. This article reported the test results of the prototype in the context of indicating the engine cylinder in which ignition failed to occur. Tests were carried out for two marine engines: a low-speed trunk engine directly driving the fixed-pitch propeller and a medium-speed trunk engine driving the alternator. For each case, an analysis was carried out for different engine loads and at individual cylinders in which combustion failed to occur. The experimental results showed an unambiguous relation between the combustion process of the examined engines and changes in the instantaneous rotational speed. The results also confirmed the usefulness of the proposed method and showed the correct operation of the presented diagnostic algorithm. The proposed diagnostic system could be used during the operation of engines running in real ship engine rooms.

2015 ◽  
Vol 236 ◽  
pp. 161-168
Author(s):  
Tomasz Lus

The paper presents problems related to testing of the technical condition of high-speed marine diesel engines that are not equipped with indicated valves, as it is in the case of larger medium-and low-speed marine internal combustion engines. In this case, in assessment of technical condition of engine fuel injection system and valve gear system a vibration signals (in time / angle domain) analysis modified method called HFRT (High Frequency Resonance Technique) can be used. This method indirectly helps also to evaluate the fuel combustion process in the engine cylinders. The paper presents the theoretical basis of a modified HFRT method, physical implementation of the marine diesel engine system’s analyzer used for marine engines testing built at the Institute of Construction and Operation of Ships at Polish Naval Academy (PNA) in Gdynia. The paper also includes a description of the vibration signal processing methodology and examples of measurements made in the ships conditions for a few selected types of engines.


2021 ◽  
Author(s):  
Sung-Ho Hong

This chapter deals with the tribology of marine diesel engines. Several types of diesel engines have been installed and used in the engine room of marine ships. Some of them, used for propulsion, operate at low-speed in a two-stroke combustion process in conjunction with propellers. Four-stroke engines are used for power generation and operates at medium-speed. In general, two or more four-stroke engines, including spares, are installed in the large ships. Tribological problems are important issue in the respect of reliability in the marine diesel engines, and there are many tribological engine components including bearings, pistons, fuel injection pumps and rollers. Moreover, the marine engines have lubricant problems such as lacquering. Improvements to the tribological performance of marine engine components, and lubricants can provide reduced oil and fuel consumption, improved durability, increased engines power outputs and maintenance. Therefore, this chapter shows better designs and methods in order to improve the tribological problem in the marine diesel engines.


2015 ◽  
Vol 33 (1) ◽  
pp. 91-100
Author(s):  
Tomasz Lus

Abstract In the paper results of studies that aim was to develop a diagnostic method for high-speed marine diesel engines are presented. Polish Navy is operating significant number of engines of this type also on board of submarines. Engines of this type do not have indicator valves, which complicates the assessment of combustion process and their technical condition. Polish Naval Academy in Gdynia for years has been developing methods of diagnosing marine internal combustion engines. In recent years, a diagnostic method for high-speed marine diesel engines based on the analysis of envelope of vibration accelerations generated by the valve gear mechanism and fuel system has been developed. Some tests results made on Mercedes-Maybach MB820 engines used on Kobben class submarines are presented in the paper.


Author(s):  
M. A. Hossain Mollah

Abstract Maintenance is becoming increasingly an important element in the upkeep of the modern complex equipment. There are a number of approaches to the maintenance of the equipment such as the break down maintenance and preventive maintenance. Marine diesel engines require proper maintenance to ensure their efficient, safe and trouble-free operation. The preventive maintenance task that is most useful for reducing the overall maintenance, is also known as on-condition maintenance, condition-directed maintenance, or predictive maintenance. This is done by measuring some parameter over time where it has been established that parameter correlates well with the incipient failure conditions. This paper contains the studies of the evaluation of combustion chamber leakage of four stroke marine diesel engines by using a diagnostic device. It describes the methodology to develop the performance limits of the combustion chamber leakage of marine diesel engine and the method of evaluating the condition of diesel engines. The results of model tests of the diagnostic device, Pneumatic Indicator, are also reported. The proposed methodology allows performing the evaluation of the technical condition of a cylinder piston group of marine engines both qualitative and quantitative. Thus the maintenance and repairing works may be performed according to the real condition of the engine, which is extremely useful in decreasing the overall maintenance cost.


2021 ◽  
Vol 27 (1) ◽  
pp. 03-21
Author(s):  
Сергей Иванович Горб ◽  
◽  
Екатерина Яцык

Annotation – The well-established method of tuning the speed governors (SG) of diesel engines during their operation under conditions of step disturbances, which are characteristic of diesel-generators, cannot be used for the main marine engines, the dynamic modes of which are associated, first of all, with heavy seas, because disturbances cannot change stepwise both along the channel for setting the rotational speed and along the load channel. In this regard, the practical need for the development of a method for tuning the SG of the main engines, which takes into account the peculiarities of their operation in heavy seas, has been determined. The study simulates the automatic speed control system (ASC) of the main marine engine HYUNDAI – MAN B&W 6G70ME-C9.2 of the large crude carrier "GOLDWAY" with the AutoChief 600 electronic SG. The minimum of instability of the controlled parameter was used as an optimality criterion, i.e. the amplitude of the oscillations of the rotational speed of the diesel engine shaft, with the most probable values of the amplitude and period of oscillations (rolling) of the disturbing effect. The study has established that changing the tuning parameters of the governor may lead to local extrema of the optimality criterion when using an electronic governor in the ACS in the factor space of disturbances on a diesel engine, which are typical for heavy seas. It means that the task, requiring finding local extrema using specialized methods, can be set when using an electronic governor in the ACS. However, a significant decrease in the instability of the rotational speed was achieved by carrying out a simple enumeration of the tuning parameters of the SG. It was also found that with a "heavy" propeller, the rotational speed stability can be increased by decreasing the proportional gain, as well as increasing the integrator time.


2020 ◽  
Vol 19 (3) ◽  
pp. 473-484
Author(s):  
Mina Tadros ◽  
Manuel Ventura ◽  
C. Guedes Soares

Abstract Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines. This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions. From that point, an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used. The variations of SOx emissions are computed in g/kW·h and in parts per million (ppm) as functions of the optimized parameters: brake specific fuel consumption and the amount of air-fuel ratio respectively. Then, a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load. These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.


Author(s):  
L. Allocca ◽  
L. Andreassi ◽  
S. Ubertini

Mixture preparation is a crucial aspect for the correct operation of modern DI Diesel engines as it greatly influences and alters the combustion process and therefore, the exhaust emissions. The complete comprehension of the spray impingement phenomenon is a quite complete task and to completely exploit the phenomenon a mixed numerical-experimental approach has to be considered. On the modeling side, several studies can be found in the scientific literature but only in the last years complete multidimensional modeling has been developed and applied to engine simulations. Among the models available in literature, in this paper, the models by Bai and Gosman [1] and by Lee et al. [2, 3] have been selected and implemented in the KIVA-3V code. On the experimental side, the behavior of a Diesel impinging spray emerging from a common rail injection system (injection pressures of 80 MPa and 120 MPa) has been analysed. The impinging spray has been lightened by a pulsed laser sheet generated from the second harmonic of a Nd-YAG laser. The images have been acquired by a CCD camera at different times from the start of injection (SOI). Digital image processing software has enabled to extract the characteristic parameters of the impinging spray with respect to different operating conditions. The comparison of numerical and experimental data shows that both models should be modified in order to allow a proper simulation of the splash phenomena in modern Diesel engines. Then the numerical data in terms of radial growth, height and shape of the splash cloud, as predicted by modified versions of the models are compared to the experimental ones. Differences among the models are highlighted and discussed.


2019 ◽  
Vol 177 (2) ◽  
pp. 139-144
Author(s):  
Tomasz KNIAZIEWICZ ◽  
Marcin ZACHAREWICZ

The paper presents an innovative method for assessing technical condition of a marine diesel engine that drives synchronous generator. It is based on the measurement and analysis of generators phase-to-phase voltage. Additionally, it requires the measurement of a pseudoperiodic signal [3] with a period equal to duration of engines working cycle. The basis for developing method was the assumption that rotational speed fluctuations of an engines crankshaft (and also the generator) depend on a course of a working process carried out in it. The generators phase-to-phase voltage is directly dependent on a rotational speed fluctuation of its rotor. It must therefore be possible to assess a course of a working process of an engine based on a voltage waveform of a synchronous generator that cooperates ogether.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052058
Author(s):  
O Roslyakova ◽  
V Zaitsev ◽  
D Panov

Abstract Nowadays, a lot is paid to environmental protection issues, including those related to reducing emissions from ships of the sea and river fleet, which is reflected in many works. Constant control over the content of harmful emissions in the environment forces us to deal with the issues of reducing emissions from diesel engines at the design stages and during operation. The solution to this problem allows us to consider 2 directions: constructional and the use of special equipment for capture and neutralization. In the best case, a combined method can be used, i.e. constructional with the use of capturing equipment for harmful components in diesel exhaust gases. This paper presents an analysis of the influence of various factors that reduce the load on the atmospheric air from nitrogen oxides of marine diesel engines, namely, from the operating settings of the diesel engine and its wear. On the ships of the river fleet, diesel engines are used with various mixture formation with volumetric, volumetric-film, vortex mixture formation. The leader in the listed group is the volumetric mixture engines. The paper provides an assessment of the research carried out to analyze various methods of influencing the working process of a diesel engine - the type of mixture formation, wear of the cylinder sleeve in order to determine their influence on the formation of NOx emissions.


Author(s):  
Oleg Konstantinovich Bezjukov ◽  
Vladimir Anatoljevich Zhukov

The course of the government of the Russian Federation for the development of the sea and river fleet is determined by a number of Federal target programs. These programs provide for the modernization of the composition of the sea, river and fishing fleet. The article provides analysis of the current state of the civil fleet of the Russian Federation, as well as an overview of engines that are part of the power plants of the vessels in service. There are considered prospects for the development of shipbuilding in Russia on the basis of plans for construction of different purpose vessels. Achieving the goal set by the fovernment should be ensured taking into account the policy of import substitution of the most important elements of sea and river technology. The authors state that the solution of the tasks is impossible without the development of ship propulsion engineering in Russia. The article presents the review of engine-building enterprises of the Russian Federation and products manufactured by them, most attention being given to engine rotational velocity and output. The authors give a comparative analysis to diesel engines produced in Russia and engines of leading foreign manufacturers, which is based on main technical and economic parameters, such as specific effective fuel consumption, average effective pressure, specific gravity, etc. The results of analysis helped to establish the most promising domestic manufacturers of diesel engines capable to compete with foreign manufacturers of marine diesel engines. The article shows the prospects of converting versatile engines produced at domestic enterprises into marine engines, with appropriate modernization of their systems and use of domestic components in their design which meet modern requirements. The article shows the most promising engines of Russian manufacturers, their technical and economic characteristics, which ensure competitiveness; gives the dimensions of advanced engines. The article contains recommendations for ensuring the developing and production of competitive marine engines intended for sea, fishing and river fleets in the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document