scholarly journals Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1527
Author(s):  
José Aravena ◽  
Dante Carrasco ◽  
Matias Diaz ◽  
Matias Uriarte ◽  
Felix Rojas ◽  
...  

In recent years, different off-the-shelf solutions for the rapid control prototyping of power electronics converters have been commercialised. The main benefits of those systems are based on a fast and easy-to-use environment due to high-level programming. However, most of those systems are very expensive and are closed software and hardware solutions. In this context, this paper presents the design and implementation of a control platform targeting at the segment in between expensive off-the-shelf control platforms and low-cost controllers. The control platform is based on the Launchpad TMS320F28379D from Texas Instruments, and it is equipped with an expansion board that provide analogue-to-digital measurements, switching signals and hardware protections. The performance of the control platform is experimentally tested on a 20 kVA power converter.

2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 393-406 ◽  
Author(s):  
Vlado Porobic ◽  
Evgenije Adzic ◽  
Milan Rapaic

Hardware-in-the-Loop (HIL) emulation is poised to become unsurpassed design tool for development, testing, and optimization of real-time control algorithms for grid connected power electronics converters for distributed generation, active filters and smart grid applications. It is strongly important to examine and test how grid connected converters perform under different operating conditions including grid disturbances and faults. In that sense, converter?s controller is a key component responsible for ensuring safe and high-performance operation. This paper demonstrates an example how ultra-low latency and high fidelity HIL emulator is used to easily, rapidly and exhaustively test and validate standard control strategy for grid connected power electronics converters, without need for expensive hardware prototyping and laboratory test equipment.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2092
Author(s):  
Ke Li ◽  
Paul Leonard Evans ◽  
Christopher Mark Johnson ◽  
Arnaud Videt ◽  
Nadir Idir

In order to model GaN-HEMT switching transients and determine power losses, a compact model including dynamic RDSon effect is proposed herein. The model includes mathematical equations to represent device static and capacitance-voltage characteristics, and a behavioural voltage source, which includes multiple RC units to represent different time constants for trapping and detrapping effect from 100 ns to 100 s range. All the required parameters in the model can be obtained by fitting method using a datasheet or experimental characterisation results. The model is then implemented into our developed virtual prototyping software, where the device compact model is co-simulated with a parasitic inductance physical model to obtain the switching waveform. As model order reduction is applied in our software to resolve physical model, the device switching current and voltage waveform can be obtained in the range of minutes. By comparison with experimental measurements, the model is validated to accurately represent device switching transients as well as their spectrum in frequency domain until 100 MHz. In terms of dynamic RDSon value, the mismatch between the model and experimental results is within 10% under different power converter operation conditions in terms of switching frequencies and duty cycles, so designers can use this model to accurately obtain GaN-HEMT power losses due to trapping and detrapping effects for power electronics converters.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3405 ◽  
Author(s):  
Manuel Espinosa-Gavira ◽  
Agustín Agüera-Pérez ◽  
Juan González de la Rosa ◽  
José Palomares-Salas ◽  
José Sierra-Fernández

Very short-term solar forecasts are gaining interest for their application on real-time control of photovoltaic systems. These forecasts are intimately related to the cloud motion that produce variations of the irradiance field on scales of seconds and meters, thus particularly impacting in small photovoltaic systems. Very short-term forecast models must be supported by updated information of the local irradiance field, and solar sensor networks are positioning as the more direct way to obtain these data. The development of solar sensor networks adapted to small-scale systems as microgrids is subject to specific requirements: high updating frequency, high density of measurement points and low investment. This paper proposes a wireless sensor network able to provide snapshots of the irradiance field with an updating frequency of 2 Hz. The network comprised 16 motes regularly distributed over an area of 15 m × 15 m (4 motes × 4 motes, minimum intersensor distance of 5 m). The irradiance values were estimated from illuminance measurements acquired by lux-meters in the network motes. The estimated irradiances were validated with measurements of a secondary standard pyranometer obtaining a mean absolute error of 24.4 W/m 2 and a standard deviation of 36.1 W/m 2 . The network was able to capture the cloud motion and the main features of the irradiance field even with the reduced dimensions of the monitoring area. These results and the low-cost of the measurement devices indicate that this concept of solar sensor networks would be appropriate not only for photovoltaic plants in the range of MW, but also for smaller systems such as the ones installed in microgrids.


1986 ◽  
Vol 19 (13) ◽  
pp. 113-117
Author(s):  
J.J. Serrano ◽  
C. Cebrián ◽  
J. Vila ◽  
R. Ors

Leonardo ◽  
2012 ◽  
Vol 45 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Byron Lahey ◽  
Winslow Burleson ◽  
Elizabeth Streb

Translation is a multimedia dance performed on a vertical wall filled with the projected image of a lunar surface. Pendaphonics is a low-cost, versatile, and robust motion-sensing hardware-software system integrated with the rigging of Translation to detect the dancers' motion and provide real-time control of the virtual moonscape. Replacing remotely triggered manual cues with high-resolution, real-time control by the performers expands the expressive range and ensures synchronization of feedback with the performers' movements. This project is the first application of an ongoing collaboration between the Motivational Environments Research Group at Arizona State University (ASU) and STREB Extreme Action Company.


Author(s):  
Ryan W. Krauss

Arduino microcontrollers are popular, low-cost, easy-to-program, and have an active user community. This paper seeks to quantitatively assess whether or not Arduinos are a good fit for real-time feedback control experiments and controls education. Bode plots and serial echo tests are used to assess the use of Arduinos in two scenarios: a prototyping mode that involves bidirectional real-time serial communication with a PC and a hybrid mode that streams data in real-time over serial. The closed-loop performance with the Arduino is comparable to that of another more complicated and more expensive microcontroller for the plant considered. Some practical tips on using an Arduino for real-time feedback control are also given.


Author(s):  
Daniel J. Block ◽  
Mark B. Michelotti ◽  
Ramavarapu S. Sreenivas

AbstractThis paper describes the development of an embedded system whose purpose is to control the Novint Falcon as a robot, and to develop a control experiment that demonstrates the use the Novint Falcon as a robotic actuator. The Novint Falcon, which is a PC input device, is “haptic” in the sense that it has a force feedback component. Its relatively low cost compared with other platforms makes it a good candidate for academic application in robot modeling and control. An embedded system is developed to interface with the multiple motors and sensors present in the Novint Falcon, which is subsequently used to control three independent Novint Falcons for a “ballon- plate” experiment. The results show that the device is a viable solution for high-speed actuation of small-scale mechanical systems.


Author(s):  
Calvin Coopmans ◽  
Haiyang Chao ◽  
YangQuan Chen

Small UAV performance is limited by the sensors and software filters used in the navigational systems. Several solutions of various complexity and cost exist, however no ready-made solutions exist for a high-accuracy, low-cost UAV system. Presented is the design (low-level system as well as high-level extended Kalman filter) for a specifically designed small-UAV navigation platform, AggieNav.


Sign in / Sign up

Export Citation Format

Share Document