scholarly journals The Status of Research and Innovation on Heating and Cooling Networks as Smart Energy Systems within Horizon 2020

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2835
Author(s):  
Costanza Saletti ◽  
Mirko Morini ◽  
Agostino Gambarotta

The European Union is funding scientific research through the Horizon 2020 Framework Programme. Since the key priorities for the next few decades are the reduction in carbon emissions and the enhancement of energy system conversion efficiency, a collection of the most recent research projects can be beneficial to researchers and stakeholders who want to easily access and identify recent innovation in the energy sector. This paper proposes an overview of the Horizon 2020 projects on smart distributed energy systems, with particular focus on heating and cooling networks and their efficient management and control. The characteristics of the selected projects are summarized, and the relevant features, including the energy vectors involved, main applications and expected outputs are reported and analyzed. The resulting framework fosters the deployment of digital technologies and software platforms to achieve smart and optimized energy systems.

Author(s):  
Vladimir K. Averyanov ◽  
Aleksey A. Melezhik ◽  
Alexander S. Gorshkov ◽  
Yury V. Yuferev

The paper defines the main factors of the smart energy systems that influence on the district heating. Noted increase in the regulatory impact of electric energy system on the district heating and increase in roles of the distribution and consumption of thermal energy. Urban population and other consumers of energy become equal partners of the utilities and acquire the status of "active" consumers. The heating supply companies need to develop a new model of management of heating regimes with dynamic synchronization with energy system and "active" consumers. One of the most important conditions of the achievement of the cost reduction, reliability and quality increase in community facilities is active consumer's behavior.


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2021 ◽  
Author(s):  
Stefanie Holzwarth ◽  
Martin Bachmann ◽  
Bringfried Pflug ◽  
Aimé Meygret ◽  
Caroline Bès ◽  
...  

<p>The objective of the H2020 project “Copernicus Cal/Val Solution (CCVS)” is to define a holistic Cal/Val strategy for all ongoing and upcoming Copernicus Sentinel missions. This includes an improved calibration of currently operational or planned Copernicus Sentinel sensors and the validation of Copernicus core products generated by the payload ground segments. CCVS will identify gaps and propose long-term solutions to address currently existing constraints in the Cal/Val domain and exploit existing synergies between the missions. An overview of existing calibration and validation sources and means is needed before starting the gap analysis. In this context, this survey is concerned with measurement capabilities for aerial campaigns.</p><p>Since decades airborne observations are an essential contribution to support Earth-System model development and space-based observing programs, both in the domains of Earth Observation (radar and optical) as well as for atmospheric research. The collection of airborne reference data can be directly related to satellite observations, since they are collected in ideal validation conditions using well calibrated reference sensors. Many of these sensors are also used to validate and characterize postlaunch instrument performance. The variety of available aircraft equipped with different instrumentations ranges from motorized gliders to jets acquiring data from different heights to the upper troposphere. In addition, balloons are also used as platforms, either small weather balloons with light payload (around 3 kg), or open stratospheric balloons with big payload (more than a ton). For some time now, UAVs/drones are also used in order to acquire data for Cal/Val purposes. They offer a higher flexibility compared to airplanes, plus covering a bigger area compared to in-situ measurements on ground. On the other hand, they also have limitations when it comes to the weight of instrumentation and maximum altitude level above ground. This reflects the wide range of possible aerial measurements supporting the Cal/Val activities.</p><p>The survey will identify the different airborne campaigns. The report will include the description of campaigns, their spatial distribution and extent, ownership and funding, data policy and availability and measurement frequency. Also, a list of common instrumentation, metrological traceability, availability of uncertainty evaluation and quality management will be discussed. The report additionally deals with future possibilities e.g., planned developments and emerging technologies in instrumentation for airborne and balloon based campaigns.</p><p>This presentation gives an overview of the preliminary survey results and puts them in context with the Cal/Val requirements of the different Copernicus Sentinel missions.</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 101004242.</p>


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zahra Heidari Darani ◽  
Mohsen Taheri Demne ◽  
Darush Mohammadi Zanjirani ◽  
Ali Zackery

AbstractEmerging energy systems are inherently different from their conventional counter-parts. To address all issues of these systems, comprehensive approaches of transdisciplinary and post-normal sciences are needed. This article tries to re-conceptualize emerging energy systems using Robert Rosen’s theory of anticipatory system and introduces the concept of the anticipatory smart energy system (ASES). Three important features of an ASES are described and socio-technical considerations for realization of these features are discussed. The article also considers realization of such systems under society 5.0 paradigm and spime techno-culture. In ASESs, the identity of users evolves and new identities are created for energy users, based on the production, consumption, storage, and distributed management of energy. An Anticipatory energy system can manage a common pool of prosumaging.


Author(s):  
Harry van Bommel

This chapter discusses the strengthening of ties between the EU and Israel during the breakdown of Oslo as well as during other fruitless peace initiatives. Shortly after the Oslo process began, the EU and Israel initiated negotiations on broadening their cooperation. This led to the signing of the EU–Israel Association Agreement in 1995. As well as economic cooperation, which was established as early as 1975 in a cooperation agreement, this new treaty included other areas, such as scientific and technical research. In more recent years the relationship between the EU and Israel has been deepened further. In 2014 the EU and Israel signed the Horizon 2020 scientific cooperation agreement, which gives Israel equal access with EU member states to the largest-ever EU research and innovation program. In itself, there is nothing wrong with the deepening of economic, scientific, cultural, and political relations between countries. However, the deepening of relations between the EU and Israel means indirect support for the Israeli occupation and the policy of expanding the settlements.


Author(s):  
Marinella Arena

The communication of architecture is a complex and multidisciplinary process, indispensable for enhancing a monument properly and to allow understanding and knowledge to a large number of users. The European Architectural Heritage, and the Italian one in particular, is enormous; the processes of knowledge, cataloguing and analysis are far from being complete. This fact has prompted the European Union to invest, especially in recent years, in research projects designed to increase the communication strategies and put a value on the present assets in its territory. For example, the programs of the European Commission for Research and Innovation, found in “Horizon 2020”, define the communication based on the new media as the new frontier for the enhancement of architectural heritage (Reflective Cities). The main goal is to develop a better awareness of the Architectural Heritage through increased interaction between the citizen, the monument and the scientific community.


Author(s):  
Stefan Wischhusen ◽  
Gerhard Schmitz

In this paper, criteria which indicate the usage of transient models and dynamic simulation environments for such energy systems are presented. A complex energy system for heating and cooling of industrial facilities and industrial processes is presented as a reference model. A model of a hot water storage tank is presented, which is optimized for the simulation in whole years, in which a very accurate transient response at much quicker simulation times compared to conventional geometric models can be delivered. The model was validated with measurement data from a large cogeneration plant. In addition, the economical impact of system simulation is emphasized on by an optimization study carried out on a large industrial system. Furthermore, the impact of a transient system model is compared to that of a steady state approach of the same system.


2020 ◽  
Author(s):  
Shraddha Gupta ◽  
Jürgen Kurths ◽  
Florian Pappenberger

<p>Every point on the Earth’s surface is a dynamical system which behaves in a complex way while interacting with other dynamical systems. Network theory captures this feature of climate to study the collective behaviour of these interacting systems giving new insights into the problem. Recently, climate networks have been a promising approach to the study of climate phenomena such as El Niño, Indian monsoon, etc. These phenomena, however, occur over a long period of time. Weather phenomena such as tropical cyclones (TCs) that are relatively short-lived, destructive events are a major concern to life and property especially for densely populated coastlines such as in the North Indian Ocean (NIO) basin. Here, we study TCs in the NIO basin by constructing climate networks using the ERA5 Sea Surface Temperature and Air temperature at 1000 hPa. We analyze these networks using the percolation framework for the post-monsoon (October-November-December) season which experiences a high frequency of TCs every year. We find significant signatures of TCs in the network structure which appear as abrupt discontinuities in the percolation-based parameters during the period of a TC. This shows the potential of climate networks towards forecasting of tropical cyclones.</p><p> </p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813844.</p>


2020 ◽  
Author(s):  
Alvaro Corral ◽  

<p>The CAFE Project is a Marie S. Curie Innovative-Training-Network (ITN) project funded by the EU. The ultimate goal of the CAFE project is to contribute to the improvement of sub-seasonal predictability of extreme weather events. This will be addressed through a structured and cross-disciplinary program, training 12 early stage researchers who undertake their PhD theses. CAFE brings together a team of co-supervisors with complementary expertise in climate science, meteorology, statistics and nonlinear physics.</p><p>The CAFE team comprises ten beneficiaries (seven academic centres, one governmental agency, one intergovernmental agency and one company: ARIA, CRM, CSIC, ECMWF, MeteoFrance, MPIPKS, PIK, TUBAF, UPC, UR) and ten partner organizations (CEA and Munich Re, among them).</p><p>CAFE research is organized into three main lines: Atmospheric and oceanic processes, Analysis of extremes, and Tools for predictability, all focused on the sub-seasonal time scale. This includes the study of Rossby wave packets, Madden-Julian oscillation, Lagrangian coherent structures, ENSO-related extreme weather anomalies, cascades of extreme events, extreme precipitation, large-scale atmospheric flow patterns, and stochastic weather generators, among other topics.</p><p>Information about the CAFE project will be updated at:</p><p>http://www.cafes2se-itn.eu/</p><p>https://twitter.com/CAFE_S2SExtrem</p><p>This project receives funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813844.</p>


Sign in / Sign up

Export Citation Format

Share Document