scholarly journals Effect of Extraction Time on Unreacted Oil Removal in Biodiesel Purification Using Deep Eutectic Solvent

REAKTOR ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 122
Author(s):  
Helda Niawanti ◽  
Siti Zullaikah

Rice bran oil (RBO) based biodiesel contains unreacted oil such as monoglyceride (MG), diglyceride (DG) and triglyceride (TG) to be purified. The liquid-liquid extraction (LLE) method was used for purification using Deep Eutectic Solvent (DES). The objective of this work was to study the effect of extraction time on unreacted oil removal. RBO containing 16.49% oil with free fatty acids (FFA) content of 44.75%. Acid catalyzed methanolysis was used for biodiesel production under operating conditions: T = 60°C, t = 8 hours, molar ratio of oil/methanol  was 1/10, H2SO4 1% w/w of RBO. Crude biodiesel containing 89.05% fatty acid methyl ester (FAME), 0.05% FFA, TG 4.03%, DG 4.01%  and MG 0.30%. DES was made from choline chloride and ethylene glycol with 1/2 molar ratio, while molar ratio of biodiesel/DES was 1/2. The extraction time was varied from 15 to 240 minutes at 30°C. The highest TG, DG and MG removal were obtained at 240 minutes, they were 3.01%, 0.22% and 0.03%, respectively. FAME and FFA content were 96.55% and 0.03%. Keywords: biodiesel; DES; extraction; unreacted oil; purification

2020 ◽  
Vol 35 ◽  
pp. 9-17
Author(s):  
Renita Manurung ◽  
Alwi Gery Siregar

In this study, deep eutectic solvent (DES) used as co solvent for enzymatic biodiesel production from degumming palm oil (DPO). DES is formed from the salt compound choline-chloride (ChCI) with glycerol at 1:2 molar ratio. Furthermore, the effectiveness of the DES was tested by enzymatic reactions using novozym 435® for the production of palm biodiesel with raw materials DPO. The use of enzymes with the DES system can maintain the activity and stability of the novozyme enzyme measured by the yield produced until the 10th usage produces biodiesel yield > 99% with a concentration of DES 0.5% with a molar ratio of 0.5% water. Spectra of DES ChCI:glycerol and ChCI:glycerol:water characterized by FTIR, morphological structure novozym by characterized SEM and then biodiesel product analyzed by GC-MS. This shows that the ChCI:glycerol:water system in enzymatic biodiesel production has good potential to maintain enzyme activity and stability.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 403
Author(s):  
Matea Bačić ◽  
Anabela Ljubić ◽  
Martin Gojun ◽  
Anita Šalić ◽  
Ana Jurinjak Tušek ◽  
...  

In this research, optimization of the integrated biodiesel production process composed of transesterification of edible sunflower oil, catalyzed by commercial lipase, with simultaneous extraction of glycerol from the reaction mixture was performed. Deep eutectic solvents (DESs) were used in this integrated process as the reaction and extraction media. For two systems, choline chloride:glycerol (ChCl:Gly) and choline chloride:ethylene glycol (ChCl:EG), respectively, the optimal water content, mass ratio of the phase containing the mixture of reactants (oil and methanol) with an enzyme and a DES phase (mass ratio of phases), and the molar ratio of deep eutectic solvent constituents were determined using response surface methodology (RSM). Experiments performed with ChCl:Gly resulted in a higher biodiesel yield and higher glycerol extraction efficiency, namely, a mass ratio of phases of 1:1, a mass fraction of water of 6.6%, and a molar ratio of the ChCl:Gly of 1:3.5 were determined to be the optimal process conditions. When the reaction was performed in a batch reactor under the optimal conditions, the process resulted in a 43.54 ± 0.2% yield and 99.54 ± 0.19% glycerol extraction efficiency (t = 2 h). Unfortunately, the free glycerol content was higher than the one defined by international standards (wG > 0.02%); therefore, the process was performed in a microsystem to enhance the mass transfer. Gaining the same yield and free glycerol content below the standards (wG = 0.0019 ± 0.003%), the microsystem proved to be a good direction for future process optimization.


2013 ◽  
Vol 834-836 ◽  
pp. 550-554 ◽  
Author(s):  
Warakom Suwanthai ◽  
Vittaya Punsuvon ◽  
Pilanee Vaithanomsat

In this research, calcium methoxide was synthesized as solid base catalyst from quick lime for biodiesel production. The catalyst was further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection fourier transform (ATR-FTIR) and Energy-dispersive X-ray spectroscopies (EDX) to evaluate its performance. The transesterification of refined palm oil using calcium methoxide and the process parameters affecting the fatty acid methyl ester (FAME) content such as catalyst concentration, methanol:oil molar ratio and reaction time were investigated. The results showed that the FAME content at 97% was achieved within 3 h using 3 %wt catalyst loading, 12:1 methanol:oil molar ratio and 65 °C reaction temperature. The result of FAME suggested calcium methoxide was the promising solid catalyst for substitution of the conventional liquid catalyst.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


2015 ◽  
Vol 13 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Emine Sert

Abstract Within the framework of green chemistry, catalysts should be met different criteria such as biodegradability, recyclability, flammability, non-toxicity and low price. Acidic deep eutectic solvent (DES) have been synthesized for this purpose, by mixing para-toluene sulfonic acid and choline chloride. The catalytic activity of DES was studied in the esterification of acrylic acid with n-butanol. The usage of DES as catalyst is simple, safe and cheap. The effects of temperature, catalyst loading, n-butanol/acrylic acid molar ratio on the conversion of acrylic acid were performed. The batch reactor experiments were carried out at temperatures of 338, 348, 358 and 368 K, molar ratio of butanol to acrylic acid of 1, 2,3 and catalyst loading of 10, 15, 20 and 90 g/L. 90.2% of acrylic acid conversion was achieved at a temperature of 358 K and catalyst loading of 20 g/L. Reusability of DES was investigated. Reusability and catalytic activity makes DES efficient as catalyst.


2018 ◽  
Vol 67 ◽  
pp. 02010 ◽  
Author(s):  
Sari Dafinah Ramadhani ◽  
Saphira Nurina Fakhri ◽  
Setijo Bismo

The disadvantages of conventional biodiesel synthesis trigger the birth of new biodiesel synthesis methods using the DBD plasma reactor. The conventional methods with homogeneous and heterogeneous catalysts have significant constraints that the formation of glycerol compounds in large enough quantities that require considerable energy. The aim of present experiment is to design DBD non-thermal plasma reactor coaxial pipe type and to do its performance test in converting biodiesel The feed stock used are palm oil, ethanol, and argon gas as plasma carrier. Such a chemical reactor, this plasma reactor is also influenced by reaction kinetics and hydrodynamic factors. From this research, it can be seen that the optimum feed and gas flowrate being operated is 1.64 and 41.67 mL/s. The plasma reactor is used in the form of a quartz glass tube surrounded by a SS-314 spiral coil as an outer electrode. The applied operating conditions are 1 : 1 molar ratio of methanol/oil, ambient temperature of 28 - 30 °C, and pressure 1 bar. From this performance test, it is found that this plasma reactor can be used to synthesize biodiesel from palm oil and methanol without catalyst, no formation of soap, and minimal byproducts.


Author(s):  
Mahfud Mahfud ◽  
Ansori Ansori

Energy demand is currently increasing in line with technological and economic developments, but not accompanied by an increase in energy reserves. So we need another alternative energy that can be renewed, namely biodiesel. Biodiesel has been produced commercially through the transesterification from vegetable oil with methanol using catalyst that produces esters and glycerol. The formation of glycerol which is by-product can reduce its economic value, so it needs to be done the separation process. Therefore, a new route is proposed in this study, namely the interesterification reaction (non-alcoholic route) using methyl acetate as an alkyl group supplier and potassium methoxide catalyst. The superiority of the product produced by the interesterification reaction is biodiesel with triacetin byproducts which have an economical value and can be added to biodiesel formulations because of their solubility so that no side product separation process is needed. To increase the yield of biodiesel and the interesterification rate, the ultrasound method was used in this study. To optimize the factors that affect the interesterification reaction (molar ratio of methyl acetate to oil, catalyst concentration, temperature, and interesterification time), the Box-Behnken design (BBD) is used. Optimal operating conditions to produce the yields of biodiesel of 98.64 % are at molar ratio of methyl acetate to palm oil of 18.74, catalyst concentration of 1.24 %, temperature of 57.84 °C, and interesterification time of 12.69 minutes.


2019 ◽  
Vol 9 (20) ◽  
pp. 4401 ◽  
Author(s):  
Karim ◽  
Aziz ◽  
Brza ◽  
Abdullah ◽  
Kadir

The anodic dissolution of bulk metallic copper was conducted in ionic liquids (ILs)—a deep eutectic solvent (DES) ((CH3)3NC2H4OH) comprised of a 1:2 molar ratio mixture of choline chloride Cl (ChCl), and ethylene glycol (EG)—and imidazolium-based ILs, such as C4mimCl, using electrochemical techniques, such as cyclic voltammetry, anodic linear sweep voltammetry, and chronopotentiometry.To investigate the electrochemical dissolution mechanism, electrochemical impedance spectroscopy (EIS) was used. In addition to spectroscopic techniques, for instance, UV-visible spectroscopy, microscopic techniques, such as atomic force microscopy (AFM), were used. The significant industrial importance of metallic copper has motivated several research groups to deal with such an invaluable metal. It was confirmed that the speciation of dissolved copper from the bulk phase at the interface region is [CuCl3]− and [CuCl4]2− in such chloride-rich media, and the EG determine the structure of the interfacial region in the electrochemical dissolution process. A super-saturated solution was produced at the electrode/solution interface and CuCl2 was deposited on the metal surface.


Separations ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 22 ◽  
Author(s):  
Aleksandra Sander ◽  
Ana Petračić ◽  
Jelena Parlov Vuković ◽  
Lana Husinec

Over three billion cups of coffee are consumed daily, making waste coffee grounds readily available throughout the world. Containing approximately 10–15 wt% of oil, they have great potential for biodiesel production. The goal of this work was to produce high quality biodiesel from waste coffee grounds. One fresh and four different types of waste coffee grounds were collected. Oil was extracted by the Soxhlet method with n-hexane and then purified via extractive deacidification with a potassium carbonate-based deep eutectic solvent. Biodiesels were synthesized by means of alkali catalyzed transesterification at different catalyst:methanol:oil mass ratios and reaction times. Impurities present in crude biodiesels were extracted with a choline chloride-based deep eutectic solvent. All batch extraction experiments were performed at room conditions in a small scale extractor. Optimal conditions for synthesis and purification were defined in order to assure high quality of the produced biodiesel. Additionally, continuous column extraction with the choline chloride-based solvent was tested as a purification method for crude biodiesel. Stabilization time and optimal biodiesel to solvent mass ratio were determined. The potassium carbonate-based solvent efficiently reduced the total acid number of the feedstock (deacidification efficiency ranged from 86.18 to 94.15%), while the one based on choline chloride removed free glycerol and glycerides from crude biodiesels. After continuous purification, the purified biodiesel was of excellent quality with glycerol and glyceride contents below the EN 14214 limit.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 171 ◽  
Author(s):  
Yue-Yue Si ◽  
Shi-Wei Sun ◽  
Kun Liu ◽  
Yang Liu ◽  
Hai-Lin Shi ◽  
...  

Deep eutectic solvents (DESs) are increasingly receiving interest as a new type of green and sustainable alternative to hazardous organic solvents. In this work, a novel DES based on levulinic acid (La) and 1,4-butanediol (Buta) as an extraction media was developed for extracting the bioactive alkaloid rutaecarpine from the unripe fruits of Tetradium ruticarpum. 24 different DESs consisting of choline chloride, betaine, sugar alcohols, organic acids, amides, and sugars were prepared and tailored to test their extraction efficiency. After initial screening, a hydrophilic DES composed of La and Buta with 1:0.5 molar ratio containing 25% water was tailored for the highest extraction efficiency, followed by the optimizations of molar ratio and water content. The interaction between the molecules of La-Buta DES was investigated by nuclear magnetic resonance spectroscopy in order to confirm its deep eutectic supermolecular structure feature. The extraction conditions were optimized by single-factor experiments, including extraction temperature, extraction time, and solid-liquid ratio. The developed La-Buta DES extraction procedure was successfully applied for the analysis of rutaecarpine in Chinese patent medicines containing the unripe fruits of T. ruticarpum. The excellent property of La-Buta DES indicated its potential as a promising green solvent instead of conventional organic solvent for the extraction of rutaecarpine from the unripe fruits of T. ruticarpum, and that it can used as a sustainable and safe extraction media for other applications.


Sign in / Sign up

Export Citation Format

Share Document